Linking Water Sources & Water Quality within the Jordan River, Utah

Jennifer Follstad Shah¹, Rose Smith²,³, Rachel Gabor⁴, Yusuf Jameel³, Samantha Weintraub⁵

¹ Environmental & Sustainability Studies / Geography, University of Utah
² Biology, University of Utah
³ Geology & Geophysics, University of Utah
⁴ School of Natural Resources & Environment, Ohio State University
⁵ NEON, Inc.

Salt Lake County Watershed Symposium – November 15, 2018
Acknowledgements

Funding Sources
• Jordan River / Farmington Bay Water Quality Council (South Davis Sewer District)
• Innovative Urban Transitions & Aridregion Hydrosustainability (iUTAH) NSF EPSCOR Grant
• Inter-University Training for Continental Scale Ecology (ITCE), University of Utah
• University of Utah Undergraduate Research Opportunities Program

Advisors & Technicians
• Dr. Theron Miller
• Prof. Jim Ehleringer
• Prof. Michelle Baker
• Prof. Diane Pataki
• Prof. Paul Brooks
• Prof. Gabe Bowen
• Mickey Navidomskis
• Lily Wetterlin
• Alex Anderson
• Calah Worthen
• La’Shaye Ervin Cobley
• Kendra Chritz
• Nick Storey
Outline

I. Linking patterns of discharge in the Jordan River to sources of water
II. Linking water quantity to water quality
III. Assessing nutrient processing capacity of the Jordan River
Urban Stream Syndrome

1. TSS, TDS pollution
2. Nutrient pollution
3. Altered temperature
4. Altered flow
Q1: How do the dominant sources of water to the river vary along the flowpath of an urban river and amongst seasons?

L – lake outlet
SW – surface water
GW – groundwater
E – effluent
RF – return flow
Data collected in May, August, November of 2016:

- Discharge
 - River
 - Inputs – Utah Lake, effluent, tributaries
 - Outputs – diversions
- Water isotopes (\(^{18}\)O, \(^{2}\)H)
- Water temperature
- Water chemistry
 - DO
 - NO\(_3\)-N, TDN
 - PO\(_4\)-P, TDP
 - DOC
J. of the Amer. Water Res. Assoc.
Calculation of Proportional Inputs of Water

1. $\delta^{18}O$ (and δ^2H) values of sources & river

Field data:
- This study
- Thiros. 2003. USGS *Water Resources Investigations Report 03-4028*
- Ehleringer et al. 2016. *Isotopes in Env. & Health Studies*
- *Water Isotopes Database* (http://waterisotopes.org)

2. Bayesian mixing model analysis
Dominant Sources of Water

SPRING
Above km 36: Utah Lake
Below km 36: Tributaries

SUMMER
Above km 36: Utah Lake
Below km 36: Canals

Fall
Above km 36: Groundwater
Below km 36: Effluent

J. of the Amer. Water Res. Assoc.
Proportional inputs can be similar amongst seasons, but vary dramatically in Q

EXAMPLE: km 51

Proportional inputs

- Utah Lake (3%)
- Effluent (26%)

Spring
- Utah Lake: 0.54 m3 s$^{-1}$
- Effluent: 4.66 m3 s$^{-1}$

Summer
- Utah Lake: 0.25 m3 s$^{-1}$
- Effluent: 2.35 m3 s$^{-1}$
Q2: How does spatial and temporal variation in dominant sources of water inputs affect physical & chemical characteristics of the river?
Differences in water inputs are reflected in spatial and seasonal variation in water chemistry

J. of the Amer. Water Res. Assoc.
Differences in water inputs are reflected in spatial and seasonal variation in water chemistry

Q3: Do in-stream transformations play a role in the load of nutrients transported downstream?

Processing capacity can be assessed through mass balance analyses.
- TDP loads increase downstream
- Effluent is a major source of P
- Evidence of some processing between km 40-50 (segment 6)

Smith et al. in preparation
• 15-55% reduction in loads possible, with greatest reduction for P
- 15-55% reduction in loads possible, with greatest reduction for P
- But retention in segment 4 can be explained by water diversion

Smith et al. in preparation
Conclusions

1. River management must take into consideration both natural and urban sources as influences upon river hydrology, while recognizing the spatial and temporal variation associated with these water sources.

L – lake outlet
SW – surface water
GW – groundwater
E – effluent
RF – return flow
2. It is important to assess the relative magnitude of flows from various sources in addition to relative proportions, since variable loads of constituents within water (e.g., pollutants) can be transported to the river from these different sources.
3. The river is still capable of processing nutrient loads. *How can this capacity be maximized?*

- Flow augmentation is most critical in fall, when water levels are lowest and nutrient concentrations are high.
- Nutrient reduction efforts may have the greatest effect on riverine nutrient loads in summer and fall.
Questions?

jennifer.shah@envst.utah.edu