mlrHyperopt: Effortless and collaborative hyperparameter optimization experiments

Jakob Richter
July 5, 2017
Faculty of Statistics, TU Dortmund University
1. Motivation for caret1 Users
2. Motivation for mlr2 Users
3. Website and API
4. Parameter Tuning
5. Lessons learned

1https://topepo.github.io/caret
2https://mlr-org.github.io/mlr
Motivation
caret automatically performs a grid search for all learners.

```r
library(caret)

system.time({
  m.c = train(iris[,1:4], iris[,5], method = "rf")
})
## user  system elapsed
##   4.533   0.016   4.552

system.time({
  m.r = randomForest(iris[,1:4], iris$Species)
})
## user  system elapsed
##   0.025   0.000   0.026
```

How to find out what is going on?

```r
m.c$results
```

<table>
<thead>
<tr>
<th>mtry</th>
<th>Accuracy</th>
<th>Kappa</th>
<th>AccuracySD</th>
<th>KappaSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9485003</td>
<td>0.9218204</td>
<td>0.02473556</td>
<td>0.03739386</td>
</tr>
<tr>
<td>2</td>
<td>0.9490167</td>
<td>0.9226138</td>
<td>0.02537238</td>
<td>0.03837125</td>
</tr>
<tr>
<td>3</td>
<td>0.9499133</td>
<td>0.9239744</td>
<td>0.02897600</td>
<td>0.04377608</td>
</tr>
</tbody>
</table>
Can I find out in advance which parameters will be tuned?

\texttt{modelLookup("rf")} gives some information.

\begin{verbatim}
modelLookup("rf")
model parameter label forReg forClass probModel
1 rf mtry #Randomly Selected Predictors TRUE TRUE TRUE
\end{verbatim}
Can I find out in advance which parameters will be tuned?

http://github.com/topepo/caret/blob/master/models/files
reveals all details.

Jakob Richter (TU Dortmund)
Extract from `models/files/gbm.R`:

```r
out <- expand.grid(
    interaction.depth = seq(1, len),  #<- parameter range depends on tuning budget
    n.trees = floor((1:len) * 50),  #<- ..
    shrinkage = .1,
    n.minobsinnode = 10)

# ...
# Random Search
out <- data.frame(
    n.trees = floor(runif(len, min = 1, max = 5000)),
    interaction.depth = sample(1:10, replace = TRUE, size = len),
    shrinkage = runif(len, min = .001, max = .6),
    n.minobsinnode = sample(5:25, replace = TRUE, size = len))
out <- out[!duplicated(out),]
```
mlr provides parameter definitions for all learners.

```r
library(mlr)
lrn = makeLearner("classif.randomForest")
filterParams(getParamSet(lrn), tunable = TRUE)
```

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>len</th>
<th>Def</th>
<th>Constr</th>
<th>Req</th>
<th>Tunable</th>
<th>Trafo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ntree</td>
<td>integer</td>
<td>-</td>
<td>500</td>
<td>1 to Inf</td>
<td>-</td>
<td>TRUE</td>
<td>-</td>
</tr>
<tr>
<td>mtry</td>
<td>integer</td>
<td>-</td>
<td>-</td>
<td>1 to Inf</td>
<td>-</td>
<td>TRUE</td>
<td>-</td>
</tr>
<tr>
<td>replace</td>
<td>logical</td>
<td>-</td>
<td>TRUE</td>
<td>-</td>
<td>-</td>
<td>TRUE</td>
<td>-</td>
</tr>
<tr>
<td>classwt</td>
<td>numericvector</td>
<td><NA></td>
<td>-</td>
<td>0 to Inf</td>
<td>-</td>
<td>TRUE</td>
<td>-</td>
</tr>
<tr>
<td>cutoff</td>
<td>numericvector</td>
<td><NA></td>
<td>-</td>
<td>0 to 1</td>
<td>-</td>
<td>TRUE</td>
<td>-</td>
</tr>
<tr>
<td>sampsize</td>
<td>integervector</td>
<td><NA></td>
<td>-</td>
<td>1 to Inf</td>
<td>-</td>
<td>TRUE</td>
<td>-</td>
</tr>
<tr>
<td>nodesize</td>
<td>integer</td>
<td>-</td>
<td>1</td>
<td>1 to Inf</td>
<td>-</td>
<td>TRUE</td>
<td>-</td>
</tr>
<tr>
<td>maxnodes</td>
<td>integer</td>
<td>-</td>
<td>-</td>
<td>1 to Inf</td>
<td>-</td>
<td>TRUE</td>
<td>-</td>
</tr>
<tr>
<td>importance</td>
<td>logical</td>
<td>-</td>
<td>FALSE</td>
<td>-</td>
<td>-</td>
<td>TRUE</td>
<td>-</td>
</tr>
<tr>
<td>localImp</td>
<td>logical</td>
<td>-</td>
<td>FALSE</td>
<td>-</td>
<td>-</td>
<td>TRUE</td>
<td>-</td>
</tr>
</tbody>
</table>

But **ParamSets** are unconstrained and include possibly unimportant parameters.
Necessary to define own **ParamSets** for tuning:

```r
ps = makeParamSet(
    makeIntegerParam("mtry", lower = 1, upper = 4),
    makeIntegerParam("nodesize", lower = 1, upper = 10)
)
tuneParams(lrn, iris.task, cv10, measures = acc,
    par.set = ps, makeTuneControlGrid(resolution = 3L))
```

Tune result:
Op. pars: mtry=1; nodesize=6
acc.test.mean=0.953
Deviate from the defaults in `caret`:

```r
grid = expand.grid(mtry = 2:4, nodesize = c(1,5,10))
```

```r
m = caret::train(iris[,1:4], iris[,5],
    method = "rf", tuneGrid = grid)
```

```r
## Error: The tuning parameter grid should have columns mtry
```

It seems you have to write you own custom method\(^3\).

\(^3\)https://stackoverflow.com/questions/38625493/tuning-two-parameters-for-random-forest-in-caret-package
mlr vs. caret

In caret...

+ Tuning is the default.
+ Tuning with defaults is easy.
- Deviating from defaults is a hassle and needs expert knowledge.

In mlr...

+ Train works like the default of the package.
- Tuning needs expert knowledge.
+ Deviating from defaults is easy.

To solve this problem in mlr we want to share the expert knowledge with...
mlrHyperopt
mldrHyperopt enables access to a web database of Parameter Configurations for many machine learning methods in R.

Why an online database?

- Defaults in packages will always be controversial.
- Knowledge changes over time but R packages have to maintain reproducibility.
- Defaults differ for different scenarios. (data set size etc.)
mlrHyperopt stores tuning parameters in ParConfig:

- Parameter Set of tunable parameters
- fixed Parameter Values to overwrite defaults
- associated learner and note

Features of the Parameter Set:\footnote{https://github.com/berndbischl/ParamHelpers}:

- Parameter values can be: real-valued, integer, discrete, logical, ...
- Parameters can have:
 - transformations (to account non-uniform distribution of interesting regions)
 - requirements on other parameters (to represent hierarchical structures)
- Bounds and defaults can depend on the task size, number of features, etc.
Web Interface

Overview of all ParConfigs uploaded to
http://mlrhyperopt.jakob-r.de/parconfigs

Jakob Richter (TU Dortmund)
Tune the parameters for the **ranger** Random Forest with **mlr**\(^5\).

```r
library(mlrHyperopt)

lrn = makeLearner("classif.ranger")
(pc = downloadParConfigs(learner.class = getLearnerClass(lrn)))

## Parameter Configuration
## Parameter Values: num.threads=1, verbose=FALSE, respect.unordered.factors=TRUE
## Associated Learner: classif.ranger
## Parameter Set:

# Type len  Def Constr Req Tunable Trafo
min.node.size integer - 1 1 to 10 - TRUE -
mtry integer - floor(sqrt(p)) 1 to p - TRUE -

ps = getParConfigParSet(pc[[1]])
ps = evaluateParamExpressions(ps, dict = getTaskDictionary(iris.task))

lrn = setHyperPars(lrn, par.vals = getParConfigParVals(pc[[1]]))


```
```r
tuneParams(lr, iris.task, resampling = cv10, par.set = ps,
          measures = acc, control = makeTuneControlRandom(maxit = 10))
```

Tune result:
Op. pars: min.node.size=3; mtry=1
acc.test.mean=0.96

Dependent search space for the tuning of a support vector machine.

```r
def ps = makeParamSet(
def makeDiscreteParam("kernel", c("rbfdot", "polydot")),
def makeNumericParam("C", -5, 5, trafo = function(x) 2^x),
def makeNumericParam("sigma", lower = -10, upper = 10,
def trafo = function(x) 2^x, requires = quote(kernel == "rbfdot")),
def makeNumericParam("degree", lower = 1, upper = 5,
def requires = quote(kernel == "polydot"))

pc = makeParConfig(ps, learner.name = "ksvm")
uploadParConfig(pc)
## [1] "23"
```

Jakob Richter (TU Dortmund)
With the following **ParamHelpers** functions we can generate grids for **caret**

- `generateGridDesign`
- `generateRandomDesign`
- `generateDesign` (Latin Hypercube Sample)
- `generateDesignOfDefaults` (to be used in combination)

```r
pc = downloadParConfigs(learner.name = "nnet")
grid = generateRandomDesign(n = 10L, par.set = pc[[1]]$par.set, 
    trafo = TRUE)
tr = caret::train(iris[,1:4], iris[,5], method = "nnet", 
    tuneGrid = grid, trace = FALSE)
tr$bestTune
## size   decay
## 8   14 0.4467496
```
Tuning with mlrHyperopt
A heuristic decides for tuning method:

Tuning Methods:

- **grid search:** 1 parameter, 2 mixed parameters
- **random search:** > 2 mixed parameters
- **Bayesian optimization with mlrMBO**: all parameters numeric

Default parameter sets from `mlrHyperopt` are used:

```r
(h.res = hyperopt(task = iris.task, learner = "classif.ksvm"))
```

Tune result:

```
## Op. pars: C=101; sigma=0.0432
## mmce.test.mean=0.0267
```

```r
m = mlr::train(h.res$learner, iris.task)
```

6https://mlr-org.github.io/mlrMBO/
Benchmark

OpenML Data Sets

<table>
<thead>
<tr>
<th>OpenML_ID</th>
<th>Name</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>mfeat-morphological</td>
<td>6</td>
<td>2000</td>
</tr>
<tr>
<td>3493</td>
<td>monks-problems-2</td>
<td>6</td>
<td>601</td>
</tr>
<tr>
<td>3510</td>
<td>JapaneseVowels</td>
<td>14</td>
<td>9961</td>
</tr>
<tr>
<td>3883</td>
<td>mfeat-karhunen</td>
<td>64</td>
<td>2000</td>
</tr>
<tr>
<td>3896</td>
<td>ada_agnostic</td>
<td>48</td>
<td>4562</td>
</tr>
<tr>
<td>3903</td>
<td>pc3</td>
<td>37</td>
<td>1563</td>
</tr>
<tr>
<td>9914</td>
<td>wilt</td>
<td>5</td>
<td>4839</td>
</tr>
<tr>
<td>9970</td>
<td>hill-valley</td>
<td>100</td>
<td>1212</td>
</tr>
<tr>
<td>34536</td>
<td>Internet-Advertisements</td>
<td>1558</td>
<td>3279</td>
</tr>
</tbody>
</table>

Algorithms: caret with grid and random search and mlrHyperopt. Each with a budget of 10 and 50 CV10-evaluations.

7https://www.openml.org/
All Results

Jakob Richter (TU Dortmund)
Performance with a **budget of 10 10CV-Evaluations**.

<table>
<thead>
<tr>
<th></th>
<th>caret grid</th>
<th>caret random</th>
<th>mlrHyperopt</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td>caret grid</td>
<td>0.00</td>
<td>0.09</td>
<td>0.11</td>
<td>0.40</td>
</tr>
<tr>
<td>caret random</td>
<td>0.09</td>
<td>0.00</td>
<td>0.09</td>
<td>0.49</td>
</tr>
<tr>
<td>mlrHyperopt</td>
<td>0.14</td>
<td>0.12</td>
<td>0.00</td>
<td>0.47</td>
</tr>
<tr>
<td>default</td>
<td>0.09</td>
<td>0.02</td>
<td>0.04</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The table gives the fractions of instances where \(H_0 : \text{acc}_A \leq \text{acc}_B \) is rejected by the paired *Wilcoxon*-test to level \(\alpha = 0.05 \). A column, \(B \) rows.

i.e.: mlrHyperopt is significantly better than the default settings in 47% of the cases.
Performance: Dominance

Performance with a budget of 50 10CV-Evaluations.

<table>
<thead>
<tr>
<th></th>
<th>caret grid</th>
<th>caret random</th>
<th>mlrHyperopt</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td>caret grid</td>
<td>0.00</td>
<td>0.09</td>
<td>0.21</td>
<td>0.30</td>
</tr>
<tr>
<td>caret random</td>
<td>0.40</td>
<td>0.00</td>
<td>0.12</td>
<td>0.54</td>
</tr>
<tr>
<td>mlrHyperopt</td>
<td>0.40</td>
<td>0.16</td>
<td>0.00</td>
<td>0.53</td>
</tr>
<tr>
<td>default</td>
<td>0.33</td>
<td>0.02</td>
<td>0.05</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The table gives the fractions of instances where $H_0 : acc_A \leq acc_B$ is rejected by the paired Wilcoxon-test to level $\alpha = 0.05$. A column, B rows.

i.e.: mlrHyperopt is significantly better than the default settings in 53% of the cases.
Which Learner Tuner Combination is a Good Choice?

Rankings of averaged performances of each combination on each dataset.

Jakob Richter (TU Dortmund)
Lessons Learned
Lessons Learned

- Parameter Tuning is only beneficial on some data and for some methods.
- `caret`’s grid search has performance problems on big data sets (ksvm, nnet).
- `caret`’s grid search sub model trick is beneficial (glmnet).
- The benchmark indicates that *random search* is better than the grid search.
Benefits

- Transparent and reproducible benchmarks in combination with OpenML:
 - *e.g.* Tune ml method A on parameter space with id 123 on OpenML Task 456.

Outlook

- Implement voting system / advanced statistics

Find us on GitHub

- github.com/jakob-r/mlrHyperopt
- github.com/mlr-org/mlr