MARKOV-SWITCHING GARCH MODELS IN R: THE MSGARCH PACKAGE

Keven Bluteau

joint work with:

David Ardia
Kris Boudt
Leopoldo Catania
Brian Peterson
Denis-Alexandre Trottier

useR!2017, July 3-7
https://github.com/keblu/MSGARCH
MOTIVATION – BACKGROUND

- Modeling the volatility dynamics of financial markets is key.
- *E.g.*, we need to account for volatility clustering.
MOTIVATION – GARCH

– GARCH-type models (Bollerslev, 1986):

\[y_t | I_{t-1} \sim D(0, h_t, \xi) \]

Conditional variance \(h_t \):

\[h_t = \omega + \alpha y_{t-1}^2 + \beta h_{t-1} \]

Shape parameters in \(\xi \).

Nice but:

– Estimates of GARCH models can be biased by structural breaks in the volatility dynamics.

 Implies poor risk predictions.
Simulation in which we have a break in the GARCH parameters.

\[
\begin{align*}
h_t &= 0.01 + 0.1y_{t-1}^2 + 0.8h_{t-1} \\
\alpha_1 + \beta &= 0.9
\end{align*}
\]

\[
\begin{align*}
h_t &= 0.02 + 0.1y_{t-1}^2 + 0.8h_{t-1} \\
\alpha_1 + \beta &= 0.9
\end{align*}
\]
- Covariance stationary but unconditional variance increases.

\[h_t = 0.01 + 0.1y_{t-1}^2 + 0.8h_{t-1} \]

\[\alpha_1 + \beta = 0.9 \]
MOTIVATION – BREAK

- Estimation assuming a single-regime (set of parameters).

\[h_t = 7 \times 10^{-4} + 0.0687 y_{t-1}^2 + 0.9342 h_{t-1} \]

\[\hat{\alpha}_1 + \hat{\beta} = 1.0028 \]
MOTIVATION – BREAK

- Integrated GARCH is obtained.

\[h_t = 7 \times 10^{-4} + 0.0687 y_{t-1}^2 + 0.9342 h_{t-1} \]

\[\hat{\alpha}_1 + \hat{\beta} = 1.0028 \]
A SOLUTION

- Markov-switching GARCH (MSGARCH) models.

\[y_t | (s_t = k, I_{t-1}) \sim D(0, h_{k,t}, \xi_k) \]

Conditional on state \(s_t = k \), variance \(h_{k,t} \) and distribution parameters \(\xi_k \).

- \(K \) regimes with specific GARCH-type parameters (Haas et al. 2004):

\[
\begin{align*}
 h_{1,t} &\equiv \omega_1 + \alpha_1 y_{t-1}^2 + \beta_1 h_{1,t-1} \\
 &\vdots \\
 h_{K,t} &\equiv \omega_K + \alpha_K y_{t-1}^2 + \beta_K h_{K,t-1}
\end{align*}
\]

- **Discrete-state** variable \(s_t \) evolves according to a first-order Markov chain with transition matrix \(P \).
– Problem:
 No R package dealing with these kind of model in a generalized way.

– Solution:
 Create one! The **MSGARCH** package.
– **MSGARCH** implements Haas et al. (2004a) specification:

 1. K separate single-regime conditional variance processes.
 2. Possibly K separate conditional distributions.
 3. A Markov chain dictates the switches between regimes.
 4. Assumes a zero mean process.

– Core of the package is in C++ (thanks to **Rcpp**) to allow for fast and efficient computations.
– Easy estimation and specification creation (similar to **rugarch**).
– Functionality for visualization, simulation, model selection, and risk measure forecasting.
VOLATILITY MODELS

Conditional volatility models

GARCH model (model = "sGARCH")
\[h_t = \alpha_0 + \alpha_1 y_{t-1}^2 + \beta h_{t-1} \]

EGARCH model (model = "eGARCH")
\[\ln(h_t) = \alpha_0 + \alpha_1 (|y_{t-1} - E[|y_{t-1}|]) + \alpha_2 y_{t-1} + \beta \ln(h_{t-1}) \]

GJR model (model = "gjrGARCH")
\[h_t = \alpha_0 + \alpha_1 y_{t-1}^2 + \alpha_2 y_{t-1}^2 I_{y_{t-1}<0} + \beta h_{t-1} \]

TGARCH model (model = "tGARCH")
\[h^{1/2}_t = \alpha_0 + \alpha_1 y_{t-1} I_{y_{t-1} \geq 0} + \alpha_2 y_{t-1} I_{y_{t-1} < 0} + \beta h^{1/2}_{t-1} \]

GAS model (model = "GAS")
\[h_t = \alpha_0 + \alpha_1 s_{t-1} + \beta h_{t-1}, \]
\[s_{t-1} = S_{t-1} \nabla_{t-1}, \quad \nabla_{t-1} = \frac{\partial \ln f(y_{t-1}|h_{t-1}, \lambda)}{\partial h_{t-1}}, \quad S_{t-1} = E[\nabla_{t-1} \nabla'_{t-1}]^{-1} \]

Bollerslev (1986)
Nelson (1991)
Glosten et al. (1993)
Zakoian (1994)
Creal et al. (2013)
CONDITIONAL DISTRIBUTIONS

Conditional distributions

Normal distribution (distribution = "norm")

\[f_N(z) \equiv \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, \quad z \in \mathbb{R} \]

Student-\(t\) distribution (distribution = "std")

\[f_S(z; \nu) \equiv \sqrt{\frac{\nu}{\nu-2}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi} \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{z^2}{\nu}\right)^{-\frac{\nu+1}{2}}, \quad z \in \mathbb{R} \]

GED distribution (distribution = "ged")

\[f_{GED}(z; \nu) \equiv \frac{\nu e^{-\frac{1}{2}|z|^\nu}}{\lambda^2 (1+1/\nu) \Gamma(1/\nu)}, \quad \lambda \equiv \left(\frac{\Gamma(1/\nu)}{4^{1/\nu} \Gamma(3/\nu)}\right)^{1/2}, \quad z \in \mathbb{R} \]

- Skewed versions also available using the Fernández and Steel (1998) transformation.
CREATING A SPECIFICATION

- First step is to create a specification

```r
> create.spec(model, distribution, do.skew, do.mix, do.shape.ind)
```

- Inputs:
 - model: “sGARCH”, “eGARCH”, “gjrGARCH”, “tGARCH”, “GAS”
 - distribution: “norm”, “std”, “ged”
 - do.skew: Skewed distribution Boolean.
 - do.mix: Mixture of GARCH specification of Haas et al. (2004b).
 - do.shape.ind: Make it so that only the conditional volatility models switches (distribution and shape parameter stays the same across regime).
EXAMPLES

- Simple GARCH(1,1) normal:

```r
> spec = create.spec(model = "sGARCH", distribution = "norm")
```

- Two-state MSGARCH model with GARCH(1,1) normal in both regimes:

```r
> spec = create.spec(model = c("sGARCH","sGARCH"),
                      distribution = c("norm","norm"))
```

- Complex MSGARCH model:

```r
> spec = create.spec(model = c("sGARCH", "tGARCH", "eGARCH"),
                      distribution = c("norm", "std", "ged"),
                      do.skew = c(TRUE, FALSE, TRUE))
```
WHAT IS INSIDE?

A specification is an S3 R class that gives you access to all the MSGARCH functionalities.

- Embedded C++ templated class inside. Why?
 - C++: Fast calculations of likelihood.
 - Templated: Easy future extensions.
 - This means adding conditional volatility models and conditional distributions with minimal work (and debugging).
class Normal
{ ... };

template<typename underlying>
class Skewed
{ ... };

template<typename distribution>
class sGARCH
{ ... };

template<typename Model>
class SingleRegime
{ ... };

typedef SingleRegime <sGARCH <Skewed <Normal>>> sGARCH_norm_skew;

The MSgarch class takes a vector of K SingleRegime objects class as parameters.
ILLUSTRATION – DATA

- SMI log-returns from 1990-11-12 to 2000-10-20.

```r
> require(DEoptim)
> data(SMI)
> plot(SMI)
```
ILLUSTRATION – MLE ESTIMATION

- Make use of **DEoptim** (global) & **nmkb** from **dfoptim** (local)

```r
> out.mle = fit.mle(spec = spec, y = SMI, ctr = list(do.init = TRUE))
> summary(out.mle)

[1] "DEoptim initialization: TRUE"
[1] "Fitted Parameters:"
   alpha0_1  alpha1_1  alpha2_1  beta_1  nu_1  xi_1  alpha0_2
[1,] 0.2226311 0.001360713 0.212885 0.5401085 5.943159 0.8521142 0.08298225
   alpha1_2  alpha2_2  beta_2  nu_2  xi_2
[1,] 0.006268897 0.1393344 0.8773668 20.0118 0.8581828 0.9980548 0.003125602

[1] "Transition matrix:"
   t = 1 t = 2
   t + 1 = 1 0.998054778 0.003125602
   t + 1 = 2 0.001945222 0.996874398

[1] "Stable probabilities:"
   State 1 0.5463842
   State 2 0.4536158

[1] "Unconditional volatility:"
   State 1 State 2
[1,] 0.8101812 1.422818

Log-kernel: -3364.587
AIC: 6687.134
BIC: 6769.213
```
ILLUSTRATION – BAYESIAN ESTIMATION

- Make use of `adaptMCMC`

```r
> ctr.mcmc = list(N.burn = 5000, N.mcmc = 10000, N.thin = 10, theta0 = out.mle$theta)
> out.mcmc = fit.bayes(spec = spec, y = SMI, ctr = ctr.mcmc)
| generate 15000 samples | 100%

> summary(out.mcmc)
[1] "Bayesian posterior mean:"
  alpha0_1  alpha1_1  alpha2_1  beta_1   nu_1   xi_1
  0.213301726  0.018197992  0.22144331  0.535624781  5.962895732  0.862990160
  alpha0_2  alpha1_2  alpha2_2  beta_2   nu_2   xi_2
  0.073552525  0.015786970  0.133891540  0.878384572  19.989053308  0.852081140

P     P
0.996794482 0.004340049

[1] "Posterior mean transition matrix:"
  t = 1  t = 2
  t + 1 = 1  0.996794482  0.004340049
  t + 1 = 2  0.003205518  0.995659951

[1] "Posterior mean stable probabilities:"
  Stable probabilities
  State 1  0.5399292
  State 2  0.4600708

[1] "Posterior mean unconditional volatility:"
  State 1  State 2
[1] 0.8124884  1.489994

Acceptance rate: 0.988
AIC: 6690.017
BIC: 6771.553
DIC: 6674.852
AND SO WHAT?

– Available functionalities:
  – Filtered volatilities.
  – Filtered probabilities.
  – N-step ahead simulation.
  – Predictive density.
  – Risk measures (VaR and ES).
  – Information criteria.
  – And more!

– All functionalities are compatible for both MLE and Bayesian estimation.
ILLUSTRATION – VOLATILITIES & STATE

```r
> vol = ht(out.mle)
> plot(vol, date = index(SMI))
> state = Pstate(out.mle)
> plot(state, date = index(SMI))
```
PREDICTIVE DENSITY

> pred(object, x, theta, y, log, do.its)

1. Object can take a specification:
   1. In case of a specification, \( \theta \) and \( y \) must be provided.
   2. Useful when using the same fitted model on new data \( y \).
2. Object can take a fitted model:
   1. No need to input \( \theta \) and \( y \).
   2. Useful shortcut.
3. The variable \( x \) are what we want to evaluate.
4. If \( \text{do.its} = \text{TRUE} \), \( x \) is not needed as we evaluated the function with the in-sample observation (in-sample).
5. If \( \text{do.its} = \text{FALSE} \), \( x \) is evaluated as a 1-step ahead draws.

Log-likelihood function:

> log_like = pred(object = out.mle, 
+     log = TRUE, do.its = TRUE) 
> sum(log_like$pred, na.rm = TRUE) # first observation = NA
[1] -3329.838

Use kernel() to include the priors:

> kernel(out.mle)
[1] -3364.587
ILLUSTRATION – PREDICTIVE DENSITY

```r
> grid = seq(-4,4,length.out = 1000)
> pred_dist = pred(out.mle, x = grid,
+ log = FALSE, do.its = FALSE)
> plot(pred_dist)
```

```r
> grid = seq(-4,4,length.out = 1000)
> pred_dist = pred(out.mcmc, x = grid,
+ log = FALSE, do.its = FALSE)
> plot(pred_dist)
```
ILLUSTRATION – RISK MEASURES

- The risk function works similarly to the pred function.
- It also leverages the pred function to calculate risk measures.
- `do.its = TRUE` will calculate the in-sample risk measures for all dates.
- `do.its = FALSE` will calculate the one-step ahead risk measures.

```r
> VAR95 = risk(out.mle.2, level = c(0.95), ES = TRUE, do.its = TRUE)
> plot(VAR95, date = index(SMI))
```
WHAT NEXT?

– Google Summer of Code 2017 (Leopoldo Catania).
– Working paper where we demonstrate a large scale empirical study the advantage of such model.
– Wish list:
  – Improved starting value strategy for faster optimization.
  – Multi-step ahead forecasts (by simulation).
  – Parameters constraints.
  – Standard errors of the estimates (MLE).
  – Custom MLE and MCMC optimizers (including custom priors).
  – Multivariate model with regime-switching copulas.
  – And more!

Some are currently implemented in **MSGARCH** 0.19 (available on GitHub)!
Thanks for your attention and hope you’ll enjoy our package!!

https://CRAN.R-project.org/package=MSGARCH  V. 0.17.7
https://github.com/keblu/MSGARCH  V. 0.19.0

V. 1.00.0 and new documentation coming to CRAN this August!