Computer Vision
algorithms for R users
useR.2017, Brussels, July 2017

Jan Wijffels
BNOSAC - jwijffels@bnosac.be
Overzicht

1. BNOSAC
2. Computer Vision - R toolset
3. Detect Corners
4. Detect Edges
5. Detect Lines & Contours
6. Identification / track points / predictive image features
7. Object detection
8. Contact
Providing consultancy services in **open source analytical engineering**

- Support for R / Oracle R Enterprise / Microsoft R / PostgreSQL / Python / ExtJS / Hadoop / ...
- Expertise in predictive data mining, biostatistics, geostats, R + Python programming, GUI building, artificial intelligence, process automation, analytical web development
- R implementations, application maintenance & training/consulting
- Server Pro and Shiny Pro reseller
- Organise & support RBelgium
- Hosting CRAN at www.datatailor.be
- Contributing to the R community with R packages / R training
R training by BNOSAC: www.bnosac.be/training

1. R for starters
 - 2a. Common data manipulation & Programming in R
 - 2b. Visualisation with R
 - 2c. Reporting with R
 - 2d. Data connectivity with R

 Data viz & data munging

 Deploying
 - 4a. Creating R packages and R repositories
 - 4b. git/SVN + continuous integration with R
 - 4c. Managing R processes
 - 4d. Integration of R in web applications
 - 4e. Shiny
 - 4f. Big data analytics with R (Spark, HAWQ & PL/R)

 Analytics
 - 3a. Statistical Machine learning with R
 - 3b. Text mining with R
 - 3c. Applied Spatial Analysis with R
 - 3d. Computer Vision with R and Python

Figure: Training on R / Data Science
Computer Vision - R toolset
Computer Vision with R - existing R tools

Quite some packages exist already

<table>
<thead>
<tr>
<th>General manipulation and algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>magick (importing & converting to/from all formats / basic image manipulation); imager (interpolation, resizing, warping, filtering, fourier transforms, haar wavelets, morphological operations, denoising, segmentation, gradients, blurring); EBImage, used mainly for biological applications; OpenImageR (hashing, edge detection, manipulation)</td>
</tr>
</tbody>
</table>

Domain specific processing

- R packages like **adimpro** (smoothing), **radiomics** (texture analysis), **fftw** (fourier transforms), **oro.dicom/oro.nifti** (brain images), **zoomage** (plankton analysis), **wvtool** (wood identification / filters), **Thermimage** (thermal images), **colordistance** (image clustering, color distances), **CRImage** (tumor detection), **spatstat** (Spatial Point Patterns).

R is good at interfacing

- Rvision/ROpenCVLite (OpenCV from R). API’s exist for traditional computer vision (Google Vision API, Microsoft Cognitive Services) or on top of deep learning tools like Keras (**kerasR**), Tensorflow (**tensorflow** R package).
Typical areas where bnosac.be used image recognition

Figure: Use cases

- Identify products based on images
- Quality control of products in factories
- As input for further processing (predictive models / data enrichment)
6 new R packages by bnosac.be

Available at https://github.com/bnosac/image

Containing image algorithms lacking in other R packages.

- **image.CornerDetectionF9**: FAST-9 corner detection (BSD-2).
- **image.CannyEdges**: Canny Edge Detector (GPL-3).
- **image.LineSegmentDetector**: Line Segment Detector (LSD) (AGPL-3).
- **image.ContourDetector**: Unsupervised Smooth Contour Line Detection (AGPL-3).
- **image.dlib**: Speeded up robust features (SURF) and histogram of oriented gradients (FHOG) features (AGPL-3).
- **image.darknet**: Image classification using darknet with deep learning models AlexNet, Darknet, VGG-16, GoogleNet and Darknet19. As well object detection using the state-of-the art YOLO detection system (MIT).

More packages and extensions are under development.
Detect Corners

- An implementation of the ‘FAST-9’ **corner detection** algorithm.
- Finds feature points (corners) in digital images. **These blobs can e.g. be used to track and map objects.**
- Idea of FAST-9
 - If a certain number of pixels around that pixel are all brighter or darker than the pixel itself, the pixel is a corner
 - brighter/darker is defined by a **threshold**

Figure: Fast-9 logic - see https://www.edwardrosten.com/work/fast.html

- R package is based on C code at https://github.com/jcayzac/F9-Corner-Detection-Library
- R function `image_detect_corners` requires as input
 - grayscale matrix with values in 0-255 range + set the threshold
 - `suppress_non_max`: if pixels are not part of the local maxima they are set to zero (to avoid 2 points in neighbourhood)

Figure: Fast-9 corner detection example

```r
library(pixmap)
library(image.CornerDetectionF9)

## Read in a PGM grey scale image
image <- read.pnm(file = system.file("extdata", "chairs.pgm", package="image.CornerDetectionF9"), cellres = 1)

## Detect corners
corners <- image_detect_corners(image@grey * 255,
                                 threshold = 100,
                                 suppress_non_max = TRUE)

## Plot the image and the corners
plot(image)
points(corners$x, corners$y, col = "red", pch = 20, lwd = 0.5)
```
Detect Edges

- **Canny edge detector** https://en.wikipedia.org/wiki/Canny_edge_detector,
- Detects edges in images. Logic:
 - Remove noise > Find out gradients > Keep only maximum gradient intensities (suppress non-max) > threshold to identify edges > remove edges which are very weak and not connected to strong edges

Figure: Edge detection logic - 1st derivative

- Based on C code from https://github.com/Neseb/canny, requiring libpng and fftw3 to be installed (as in `sudo apt-get install libpng-dev fftw3 fftw3-dev pkg-config`)
- For details on the math: http://www.ipol.im/pub/art/2015/35. Other edge detectors in R package OpenImageR.
Example below reads in a greyscale image and detects edges in the chairs.

```r
library(pixmap)
library(image.CannyEdges)

## Read in a PGM grey scale image
image <- read.pnm(file = system.file("extdata", "chairs.pgm", package="image.CannyEdges"),
                   cellres = 1)

## Detect edges
edges <- image_canny_edge_detector(image@grey * 255, s = 2, low_thr = 3, high_thr = 10)

## Plot the edges
plot(edges)
```

Figure: Canny Edges detection example

www.bnosac.be
Detection of lines with the Line Segment Detector (LSD). Idea:

- Contour lines are zones of the image where the gray level is changing fast enough from dark to light or the opposite.
- Line support regions are being defined by the gradient and grouped into regions with the same direction.
- Regions are put in rectangles which define segments

Figure: LSD - line support regions

- The default arguments provide very good line detections for any image
- Based on C code available at https://doi.org/10.5201/ipol.2012.gjmr-lsd
Example below reads in a greyscale image and detects lines in houses.

```r
library(pixmap)
library(image.LineSegmentDetector)

## Read in the PGM file
image <- read.pnm(file = system.file("extdata", "le-piree.pgm", package="image.LineSegmentDetector"),
cellres = 1)

## Detect the lines
linesegments <- image_line_segment_detector(image@grey * 255)
linesegments

## Plot the image + add the lines in red
plot(image)
plot(linesegments, add = TRUE, col = "red")
```

Figure: Detect Lines with LSD

 - remove low frequencies (noise) from the input image.
 - contours are frontiers separating two adjacent regions, one with significantly larger values than the other.
 - based on existing edge detector curve candidates are proposed, the curves are piecewise approximated by circular arcs
 - significance based on non-parametric Mann-Whitney U test to determine whether the samples were drawn from the same distribution or not.
- The default arguments provide very good contour detections for any image. No need to set detection thresholds like in the Canny edge detection where noise has a big impact on.
- Based on C code available at https://doi.org/10.5201/ipol.2016.175

![Smooth contour lines logic](https://www.bnosac.be)
Example below reads in a greyscale image and detects contour lines in a car.

```r
library(pixmap)
library(image.ContourDetector)

## Read in the PGM file
image <- read.pnm(file = system.file("extdata", "image.pgm", package="image.ContourDetector"),
                   cellres = 1)

## Detect the contours
contourlines <- image_contour_detector(image@grey * 255)
contourlines

Contour Lines Detector
 found 192 contour lines

## Plot the contour lines
plot(image)
plot(contourlines)
```

Figure: Detect ContourLines on car
Example below reads in a jpg image, converts it to a greyscale image and detects contour lines in the atomium.

```
library(image.ContourDetector)
library(magick)
## Convert jpg to PGM file using the magick package
x <- image_read(path = system.file("extdata", "atomium.jpg", package="image.LineSegmentDetector"))
x <- image_convert(x, format = "pgm", depth = 8)

## Save the PGM file
f <- tempfile(fileext = ".pgm")
image_write(x, path = f, format = "pgm")

## Read in the PGM file, detect the lines
image <- read.pnm(file = f, cellres = 1)
linesegments <- image_line_segment_detector(image@grey * 255)

## Overlay the contour lines on top of the plot
plot(image)
plot(linesegments, add = TRUE, col = "red")
```

Figure: Detect ContourLines on the Atomium
Identification / track points / predictive image features
New R package (5): image.dlib - SURF

- Speeded up robust features (SURF)
 - Identifies points in images
 - Gives a 64-dimensional description of each of the points
- SURF descriptors have been used to locate and recognize objects, people or faces, to reconstruct 3D scenes, to track objects and to extract points of interest.
- The SURF feature descriptor is based on the sum of the Haar wavelet response around the point of interest. Algorithm details at http://www.ipol.im/pub/art/2015/69

- Want to use it to do object matching/object recognition?
 - Run SURF descriptor (image.dlib::image_surf) on 2 images
 - Compare the SURF descriptors based on k-nearest-neighbours e.g. with the rflann R package (https://CRAN.R-project.org/package=rflann).

Figure: SURF for matching
Example below finds the blows. The output shows the points, and the 64-dimensional SURF descriptor for each of the points. If we plot it, we see it finds the boat in the below image and the mountain.

```r
library(image.dlib)
f <- system.file("extdata", "cruise_boat.bmp", package="image.dlib")
surf_blobs <- image_surf(f, max_points = 10000, detection_threshold = 50)
str(surf_blobs)
```

List of 8
$ points : num 296
$ x : num [1:296] 232 237 282 374 186 ...
$ y : num [1:296] 402 371 367 382 416 ...
$ angle : num [1:296] -2.99 2.31 2.14 -1.43 1.42 ...
$ pyramid_scale: num [1:296] 5.27 2.76 2.97 2.94 2.96 ...
$ score : num [1:296] 959 630 596 549 526 ...
$ laplacian: num [1:296] -1 -1 -1 -1 -1 -1 -1 -1 -1 1 ...
$ surf : num [1:296, 1:64] -0.0635 0.1435 0.1229 0.0496 -0.0501 ...

Plot the points
library(imager)
library(magick)
img <- image_read(path = f)
plot(magick2cimg(img), main = "SURF points")
points(surf_blobs$x, surf_blobs$y, col = "red", pch = 20)

![SURF points](image.png)
New R package (5): image.dlib - FHOG

- Histogram of oriented gradients (HOG) features
- On top of C++ library dlib (http://dlib.net) which works with bmp files as input
- HOG: http://dlib.net/imaging.html#extract_fhog_features - popular pedestrian detection algorithm commonly used in the automotive industry
 - input image is broken into cells that are (cell size) x (cell size) pixels
 - within each cell we compute a **31 dimensional FHOG vector**
 - this vector describes the gradient structure within the cell and which can be used in traditional supervised learning
 - finds features even in case of changes in illumination and viewpoint, but also due to non-rigid deformations, and intraclass variability in shape and other visual properties.

```r
library(image.dlib)
f <- system.file("extdata", "cruise_boat.bmp", package="image.dlib")
x <- image_fhog(f, cell_size = 8)
str(x)
```

List of 6

- $ hog_height : num 70
- $ hog_width : num 116
- $ fhog : num [1:70, 1:116, 1:31] 0.4 0.4 0.311 0.275 0.399 ...
- $ hog_cell_size : int 8
- $ filter_rows_padding: int 1
- $ filter_cols_padding: int 1
Object detection
New R package (6): image.darknet

- **Applications**
 - Detect locations of objects in an image based on YOLO - You Only Look Once
 - Classify an image with existing deep learning models (AlexNet, Darknet, VGG-16, Extraction, Darknet19)
- **Darknet**: single neural network to the full image.
 - Network divides the image into regions and predicts bounding boxes and probabilities of objects inside each region.
 - These bounding boxes are weighted by the predicted probabilities

```r
library(image.darknet)

## Define the model
yolo_tiny_voc <- image_darknet_model(
  type = 'detect',
  model = "tiny-yolo-voc.cfg",
  weights = system.file(package="image.darknet", "models", "tiny-yolo-voc.weights"),
  labels = c("aeroplane", "bicycle", "bird", "boat", "bottle", "bus",
             "car", "cat", "chair", "cow", "diningtable", "dog",
             "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"))

## Find objects inside the image
image_darknet_detect(file = "img/clairvoycence.jpg", object = yolo_tiny_voc)
```
Figure: YOLO - Detection

Example was based on YOLO. For other models (AlexNet, Darknet, VGG-16, Extraction, Darknet19), just download the deep learning weights and off you go. Examples at ?image_darknet_model

weights <- file.path(system.file(package="image.darknet", "models"), "yolo.weights")
For classification of an image, use **image_darknet_classify**

```r
library(image.darknet)
## Define model
model <- system.file(package="image.darknet", "include", "darknet", "cfg", "tiny.cfg")
weights <- system.file(package="image.darknet", "models", "tiny.weights")
labels <- system.file(package="image.darknet", "include", "darknet", "data", "imagenet.shortnames.list")
labels <- readLines(labels)
darknet_tiny <- image_darknet_model(type = 'classify',
                                    model = model, weights = weights, labels = labels)
## Classify new images alongside the model
##
f <- system.file("include", "darknet", "data", "dog.jpg", package="image.darknet")
x <- image_darknet_classify(file = f, object = darknet_tiny)
x
$file
[1] "C:/Users/Jan/Documents/R/win-library/3.3/image.darknet/include/darknet/data/dog.jpg"
$type
     label  probability
1 malamute  0.18206641
2  dogsled  0.12255822
3    Eskimo dog  0.06975935
4      collie  0.04245654
5  Siberian husky  0.03541765
```

Figure: YOLO - for classification
Contact
www.bnosac.be

Need more information, send a message at www.bnosac.be/index.php/contact/get-in-touch

Figure: Contact www.bnosac.be