SimPhe: Simulate Multiple Phenotypes with Epistatic Interactions

Beibei Jiang, Benno Pütz, and Bertram Müller-Myhsok.
Statistical Genetics Group
Max Planck Institute of Psychiatry, Munich, Germany
beibei_jiang@psych.mpg.de; puetz@psych.mpg.de; bmm@psych.mpg.de

SimPhe: https://cran.r-project.org/web/packages/SimPhe
Background

- **genotype:**
 the set of heritable genetic identity in our DNA

- **phenotype:**
 a trait like disorder, height, brain size

- **epistasis:**
 Interaction between two or more genetic loci
Background

- Simulation tools developed for evaluating type I error rates for new statistical association tests or power comparisons.

- The detection of dominance or the interactions it is involved in have been reported recently.
 Hemani et al. 2014; Sztepanacz et al. 2015.

- There are different models for modeling epistasis.
 Fisher 1919; Cockerham 1954; Hayman and Mather 1955; Kempthorne et al. 1957.
Background

- Simulation tools developed for evaluating type I error rates for new statistical association tests or power comparisons.

- The detection of dominance or the interactions it is involved in have been reported recently.

 Hemani et al. 2014; Sztepanacz et al. 2015.

- There are different models for modeling epistasis.

 Fisher 1919; Cockerham 1954; Hayman and Mather 1955; Kempthorne et al. 1957.
Background

- Simulation tools developed for evaluating type I error rates for new statistical association tests or power comparisons.

- The detection of dominance or the interactions it is involved in have been reported recently.

 Hemani et al. 2014; Sztepanacz et al. 2015.

- There are different models for modeling epistasis.

 Fisher 1919; Cockerham 1954; Hayman and Mather 1955; Kempthorne et al. 1957.

Cockerham model has been reported as more appropriate than the other models for the study of epistasis between genes. Kao and Zeng 2002.
Main function

Flowchart of main function Sim. Phe:

- simulate phenotype
 - sim.phe

- read parameters
 - read.simu.pars

- is.data.frame(fgeno)
 - F
 - read genotype
 - read.geno
 - T
 - calculate allele frequency
 - get.freq
 - get regression coefficients
 - get.gene.coef

 - T
 - exists
 - (heritability)
 - calculate noise variance
 - get.noise.var
 - calculate heritability
 - calc.herit

- get genetic effects
 - gene.effect

- add mean and random effect

- Output
 - pars.writer, phe.writer
Main function

Flowchart of main function Sim.Phe:

1. simulate phenotype
 - sim.phe

2. read parameters
 - read.simu.pars

3. is.data.frame(fgeno)
 - F
 - read genotype
 - read.geno
 - calculate allele frequency
 - get.freq
 - get regression coefficients
 - get.gene.coef
 - T
 - exists (heritability)
 - T
 - calculate noise variance
 - get.noise.var
 - calculate heritability
 - calc.herit
 - F
 - get genetic effects
 - gene.effect
 - add mean and random effect
 - Output
 - pars.writer, phe.writer
Main function

Flowchart of main function Sim.Phe:

- **simulate phenotype** `sim.phe`
- **read parameters** `read.simu.pars`
- **is.data.frame(fgeno)**
 - **read genotype** `read.geno`
 - **calculate allele frequency** `get.freq`
 - **get regression coefficients** `get.gene.coef`
- **exists (heritability)**
 - **calculate noise variance** `get.noise.var`
 - **calculate heritability** `calc.herit`
 - **get genetic effects** `gene.effect`
 - **add mean and random effect**
 - **Output** `pars.writer, phe.writer`
Multiple phenotypes

Conduct Correlation:

• Share same variants

• Convert via covariance matrix

\[C = LL^T \quad \longrightarrow \quad Y_{\text{new}} = LY' \]

L is a lower triangular matrix with real and positive diagonal entries in a Cholesky decomposition.
install.packages("SimPhe")
library("SimPhe")

get file path of simulation parameters
(two shared SNP pairs and one independent SNP pair for each phenotype)
fpar <- system.file("extdata", "simupars.txt", package="SimPhe")

get file path of genotype file: rows are individuals and columns are SNPs
fgeno <- system.file("extdata", "10SNP.txt", package="SimPhe")

phe <- sim.phe(fgenetic.pars = fpar,
 fgeno = fgeno,
 ftype = "snp.head",
 seed = 123,
 fwrite = FALSE)
install.packages("SimPhe")
library("SimPhe")

get file path of simulation parameters
(two shared SNP pairs and one independent SNP pair for each phenotype)
fpar <- system.file("extdata", "simupars.txt", package="SimPhe")

get file path of genotype file: rows are individuals and columns are SNPs
fgeno <- system.file("extdata", "10SNP.txt", package="SimPhe")

phe <- sim.phe(fgenetic.pars = fpar,
 fgeno = fgeno,
 ftype = "snp.head",
 seed = 123,
 fwrite = FALSE)
Features

- Consider epistasis with dominance related genetic effects
- Simulate phenotype with given heritability
- Support single and multiple phenotype(s)
- Flexible genotype input formats
Features

- Consider epistasis with dominance related genetic effects
- Simulate phenotype with given heritability
- Support single and multiple phenotype(s)
- Flexible genotype input formats
Shortcomings

- Simple genetic model
- Fixed input format for simulation parameters
- Others

"Don’t worry if it doesn’t work right. If everything did, you’d be out of a job."
— Mosher’s Law of Software Engineering
We are just on the way.

Thank you.