Incident Response with Memory Forensics

Steven Manning
Lead Security Analyst
Texas A&M IT Security
Workshop Overview (1/2)

• Introduction/Goals
• What is memory forensics?
• Why and when to use
• Enhancing incident response with memory forensics
• Windows Fundamentals
• Memory Fundamentals
• Break
Workshop Overview (2/2)

• Windows memory acquisition
 • Redline/Memoryze Demo
 • Comae Dumpit.exe Demo
• Windows memory analysis
 • Redline demos
 • Volatility demos
• Memory analysis for enterprise
• Questions/Discussion
Introduction

• Graduated from Texas A&M in 2015
• A+, N+, GIAC Certified Incident Handler (GCIH)
• Applications Development for Texas A&M IT for 5 years
• Lead Security Analyst for Texas A&M IT Security
Today's Goals

• By the end of the morning:
 • Be able to reliably capture a raw memory image from a modern Windows machine
 • Be able to utilize Mandiant Redline and Volatility to identify certain types of malicious behavior in a raw memory image of a Windows system.
Memory Forensics: What is it?

• The collection and analysis of the volatile memory of a system
• Useful in investigating advanced computer attacks which utilize varieties of techniques to avoid detection by traditional methods
Memory Forensics: What is it?

- CPU Registers
- CPU Cache
- Physical Memory
- Solid State Drives
- Mechanical Hard Drives

Speed/Cost:

Volatile:
Memory Forensics: What is it?

• Acquisition
 • Capturing the memory image
• Contextualization
• Analyzation
 • Analyze capture for events
 • Collect evidence
Why Use Memory Forensics?

• Discern recent activity
• Reliable way to get accurate system information
 • Open Sockets
 • Open Files
 • Processes
 • Threads
• Detect Malware
Why Use Memory Forensics?

• Modern malware is good at evading endpoint detection
 • Polymorphic/Metamorphic Malware
 • Encoding
 • Obfuscation
 • Packing
• Rootkits
• Memory Only Malware
Enhancing Incident Response

• Stages of Incident Response
 • Preparation
 • Identification
 • Containment
 • Eradication
 • Recovery
 • Lessons Learned
Windows Fundamentals
Machine Fundamentals

The Art of Memory Forensics - Figure 1-1
Memory Fundamentals

• Address Space
 • Linear/Virtual vs Physical
• Segmentation
• Paging
• Address Translation
Memory Fundamentals

![Diagram of Memory Fundamentals](image)

- **Control Register**
- **Page Directory Pointer Index**
 - PDPE
 - Page Directory Pointer Entries
- **Page Directory**
 - PDE
 - 512 Page Directory Entries
- **Page Table**
 - PTE
 - 512 Page Table Entries
- **Byte Index** (12 bits)
- **Virtual Address**
 - PDPI (2 bits)
 - Page Directory Index (9 bits)
 - Page Table Index (9 bits)
- **4 KB Page**
 - Desired Byte
Memory Acquisition: Overview

• User mode component
• Kernel mode component
 • Driver provides interface to kernel APIs which are able to read raw memory
 • \Device\PhysicalMemory
Memory Acquisition: Evasion

• Block Acquisition
 • Kill the memory acquisition tool
 • Block driver installation

• Block Analysis
 • Modify artifacts to trigger abort factors in analysis software

• Rootkit
 • Custom page fault handler
 • Faking read and writes
Memory Acquisition: Image Formats

• AFF
 • Extensible
 • Open Format
 • Forensic Metadata

• AFF4
 • Expanded on AFF
 • Provides multiple data views
 • Selective imaging
 • Logical file volumes
 • Hash-based imaging
Memory Acquisition: Image Formats

• RAW
 • Bit-for-bit copy of RAW data
 • Disk or Memory
 • Originally used by DD
 • Very common and widely used/accepted
 • (.dd, .dmg, .img)
Windows Memory Acquisition: Live Capture

• FireEye Redline
 • Formally Mandiant Redline
 • Acts as an interface for Memoryze output
• Collection and Investigation
• Easy to use
• Windows/Mac
• Windows 2000 SP4 to Windows 8 Service Pack 0
Windows Memory Acquisition: Live Capture

- Comae dumpit.exe
 - Formally provided by Moonsols
 - Captures RAW memory image of target machine.
 - Normally used with removable storage.
 - Extremely easy to use
 - XP to Windows 10
Windows Memory Acquisition: Live Capture

• Other Tools
 • HBGary
 • FTK Imager
 • WinPmem
 • Win32dd, Win64dd
Windows Memory Acquisition: hyberfil.sys

- `%SystemDrive%/hiberfile.sys`
 - Contains compressed RAM image
- Comae Hibr2bin.exe
 - Extract RAW memory
Windows Memory Acquisition: Virtual Machines

- VMware
 - Can be extracted from .VMSN or .VMSS files
 - RAW format
 - VMWare’s vmss2core utility
 - .VMEM == RAW

- Microsoft Hyber-V
 - .bin == RAW

- Virtualbox
 - .sav file only contains active memory pages
Break

• Snacks!
Memory Acquisition Demo

- FireEye Redline
Memory Acquisition Demo

- Comae Dumpit.exe
Malware Techniques: DLL Injection

- Normal DLL Interaction with Kernel Space
Malware Techniques: DLL Injection

- DLL injected with malicious code
Malware Techniques: DLL Injection

• Common
• OpenProcess() -> VirtualAllocEx() -> WriteProcessMemory() -> Execute
• Process Hollowing
 • Start process
 • Replace process internals with malicious code
Malware Techniques: DLL Injection

• Detection
 • Review pages which are marked as Page_Execute_Readwrite with no memory-mapped file
 • If process image does not have associated file on disk. Process is likely hollowed
Malware Techniques: DLL Injection

• Demo: Detecting Zeus/Zbot DLL Injection using Redline
Malware Techniques: DLL Injection

- Demo: Detecting Zeus/Zbot DLL Injection Volatility
Malware Techniques: Process Hiding
Malware Techniques: Process Hiding

Notepad.exe
Flink
Blink

svchost.exe
Flink
Blink

Evil.exe
Flink
Blink
Malware Techniques: Process Hiding

• Demo: Detecting Eprocess structure manipulation using Volatility
Malware Analysis for Enterprise

- Redline and Volatility are both very extensible
- Volatility supports Linux, Windows, and Mac OSx images
- Can be reactive or proactive
Malware Analysis for Enterprise

- Google’s Rekall forensic memory analysis framework
- Agents can be deployed across and environment and memory captures can be retrieved over a network.
Discussion/Questions