OpenStack at the vRan Edge

PTP Live demo, up to Kubernetes

Franck Baudin, Sr Principal Product Manager - NFV
NFV is at every hop of Mobile networks
Deployment overview 1/3

Service Assurance Framework 1.0 (TP)
Running on OpenShift cluster 3.11

core site
undercloud
provisioning-network
controllers
computes
openstack-networks

edge site
router & dhcp-relay
compute
compute-rt
openstack-networks

collectd
prometheus
vRAN: why do we need PTP?

- Connection to multiple antennas
 - (+) Higher throughput
 - (-) Risk of interferences
 - Timing spec for radio fronthaul
 - CDMA2000: $\pm 3\mu s < \text{phase} < \pm 10\mu s$
 - LTE: $\pm 1.5\mu s < \text{phase} < \pm 5\mu s$
 - 5G: $\pm 130\text{ns}$

- GNSS receivers for each compute node?
 - Satellites not visible
 - High buildings “shadow”
 - In-buildings
 - Underground
 - Expensive
Deployment overview 2/3

- PTP Grand Master Clock
- NTP Time Server
- NTP
- PTP
- Switch
 - Boundary Clock (BC)
- PTP + switch latency
- RT-Compute
- VNF
 - /dev/ptp0
- undercloud
- controllers
- misc...
- Central Site
Deployment overview 3/3

Compute Real Time

VNF

kvm_ptp /dev/ptp0

phc2sys

NIC1 /dev/ptp0

PF
VF
VF

NIC2 /dev/ptp1

PF
VF
VF

PTP
Deploy and configure the modules you need

- Modular & extensible platform
 - SDN
 - Storage
 - Monitoring

- Feature enablement:
 - 1 TripleO environment file
 - 1 parameter file

```bash
$ openstack overcloud deploy \
-e $TRIPLEO/environments/metrics-collectd-qdr.yaml \
-e templates/service-assurance-framework.yaml \n...```

```bash
$ ls ./templates/*.yaml
global-config.yaml
collectd.yaml
dpdk-config.yaml
sriov-config.yaml
hci-dpdk-config.yaml
compute-rt-edge-config.yaml
ptp.yaml
ssl-certificates.yaml
```

```yaml
resource_registry:
 OS::TripleO::Services::MetricsQdr: ../docker/services/metrics/qdr.yaml
 OS::TripleO::Services::Collectd: ../docker/services/metrics/collectd.yaml

parameter_defaults:
 MetricsQdrConnectors:
 - host: qdr-white-port-5671-sa-telemetry.redhat.local
 port: 443
 role: edge
 sslProfile: sslProfile
 verifyHostname: false
```
NFV (auto) tuning: Mistral workflow

Introspection data + role definition + user intent = generated parameters

workflow_parameters:
  tripleo.derive_params.v1.derive_parameters:
    num_phy_cores_per_numa_node_for_pmd: 1
    huge_page_allocation_percentage: 95

- name: ComputeOvsDpdkRTEdge0
  ServicesDefault:
    - OS::TripleO::Services::ComputeNeutronOvsDpdk

ComputeOvsDpdkRTEdge0Parameters:
  IsolCpusList: 2-23,26-47
  KernelArgs: default_hugepagesz=1GB hugepagesz=1G hugepages=120 intel_iommu=on iommu=pt isolcpus=2-23,26-47
  NovaReservedHostMemory: 8192
  NovaVcpuPinSet: 2-6,8-15,17-23,26-30,32-39,41-47
  OvsDpdkCoreList: 0-1,24-25
  OvsDpdkSocketMemory: 2048,1024
  OvsPmdCoreList: 7,16,31,40
Numa Aware vSwitch

```
TripleO
NeutronBridgeMappings:
['mgmt:br-admin', 'uplink:br-uplink']

NeutronPhysnetNUMANodesMapping:
{'mgmt': [0, 1], 'uplink': [1]}

nova.conf
[neutron]
physnets=mgmt,uplink

[neutron_physnet_mgmt]
uma_nodes=0,1

[neutron_physnet_uplink]
uma_nodes=1
```
Enabling vRAN use case

● Generic NFV characteristics
  ○ Mix virtio + SRIOV VF
  ○ Device role tagging

(overcloud)$ nova boot --nic net-id=$UPLINK_ID,tag=uplink
--nic port-id=$RADIO_PORT_ID,tag=radio

(vm)$ jq '.devices[]|"(.address) (.mac) (.tags[0])" meta_data.json'
"0000:00:04.0 fa:16:3e:fa:89:0f uplink"
"0000:00:06.0 fa:16:3e:6f:dd:e8 radio"

● vRAN Specific
  ○ PTP
  ○ FPGA (PCI passthrough)
  ○ Real time
Let’s have a look at the deployment
Post-Deployment validation
How to validate the NFVI?

compute node

VM: VNFc

VF10 virtio

OVS-DPDK

SR-IOV

radio

internet

uplink
Simpler catch-all test

This is not a benchmark!

Make sure that the VM is not the bottleneck
=> Use DPDK testpmd to forward packets

Check expected Mpps and Latency
=> zero packet drop expected

Single flow, 64 Bytes frames
Issue detection

● Misconfiguration visible effect
  ○ Performance lower than expected, packet drop
  ○ Extra Packets

● Real example of misconfigurations caught
  ○ Isolation/partitioning (vCPU or OVS-DPDK PMD preemption)
    ● => boot parameters, IRQ pinning, emulator thread pinning, ...
  ○ ToR switch misconfiguration (missing packets or extra packets)
  ○ BIOS misconfiguration (NUMA mode, Performance Policy, ...)
  ○ HW: PCIe x4 slot instead of x16, missing RAM bank (mem channel)
  ○ ...

15
Troubleshooting
Packet journey: radio -> uplink

while (1) {
    RX-packet()
    forward-packet()
}
Packet journey: uplink -> radio

while (1) {
    RX-packet()
    forward-packet()
}
Packet journey: radio <-> uplink

```
while (1) {
 RX-packet()
 forward-packet()
}
```
No packets left behind!

Packet are never lost, packets are dropped

- We always have a drop counter
- Except in case of a drop counter bug (SW, HW)

Packets are dropped when a queue is full

- A queue is full because it is not drained fast enough
- The bottleneck is the entity supposed to drain the queue
What if the VM is the bottleneck?
Demo
Final thoughts
Same packet flow with or w/o Kubernetes!

**RHOSP VM**

- **Kubernetes pod**
  - `DPDK`
  - `default CNI`
  - `Multus CNI`
  - `kubernetes`
  - `Device plugin`
  - `VF10`
  - `virtio`

**OpenStack compute node**

- **OVS-DPDK**
- **SR-IOV**

**Radio**

- **Uplink**

**Internet**

- **Google**
  - **Facebook**

24
Thank you

linkedin.com/company/red-hat
youtube.com/user/RedHatVideos
facebook.com/redhatinc
twitter.com/RedHat