OPEN NETWORKING //
Enabling Collaborative Development & Innovation
Akraino Kubernetes-Native Infrastructure
A blueprint family for Edge

Ricardo Noriega - Red Hat
Yolanda Robla - Red Hat
Edge Computing and Akraino

• Why **Edge computing**? The demand for real-time processing capabilities raises a need to place computing at the *edge* instead of relying on centralized processing. It brings processing and storage capabilities closer to the user endpoint, using the cloud. It reduces cost of ownership, enables faster processing, and meets specific data privacy rules.

• Akraino Edge Stack (https://wiki.akraino.org) is an open source software stack that improves the state of *edge* cloud infrastructure for carrier, provider and IoT networks. It belongs to LF edge org (https://www.lfedge.org/) , and is composed by more than 11 blueprint families, to support a variety of edge use cases (5G, AI/ML, Video Processing…)

• **Community goals**: faster edge innovation - end-to-end ecosystem (from hardware, to config, to apps) - improve user experience - provide seamless edge cloud interoperability - usage and improvement of open source
Akraino Edge stack and blueprints

- A typical service provider will have thousands of Edge sites: deployed at a cell tower, central offices… so end-to-end edge automation and zero-touch provisioning are required to minimize OPEX and meet requirements for agility.
- For resiliency, the deployment follows a hierarchy of deployments: collection of central sites, regional sites and edge sites. This deployment is achieved using blueprints.
- Akraino is composed of multiple blueprints. A blueprint is a declarative configuration of an entire stack addressed for specific use cases (5G, AI/ML…), using a reference architecture developed by the community.
- A declarative configuration is used to define all components in the ref architecture: hardware, software, tools, method of deployment, etc..
- KNI (Kubernetes Native Infrastructure) is a family of blueprints inside Akraino, that leverages best-practices and tools of Kubernetes to declare edge stacks.
Why “Kubernetes-Native Infrastructure”?

- Kubernetes-managed infrastructure
- built on the rich tooling & best-practices of Kubernetes community & ecosystem
- rich orchestration and lifecycle management
- optimized for Kubernetes-native workloads, allows hybrid deploys with Kubevirt
Declarative Edge Stacks with KNI-Edge

- Kubernetes is built around the **operator pattern**:
 - Operators capture the logic of a human operator managing services. A human that knows the logic of an app and knows how to take care of it. An operator is composed by a CRD and its controller
 - Controllers monitor a system for deviations between the *user-declared target state* and the reality and take corrective actions to reconcile reality with the declared target state.

- KNI-Edge applies this pattern **across the whole Edge Stack**:

```plaintext
I want Knative and Kubeflow deployed. Make it so!
I want Kubernetes upgraded to version 1.14. Make it so!
I want 6 machines provisioned with CoreOS. Make it so!
```
KNI-Edge Blueprints in progress

Provider Access Edge (PAE)
Optimized for real-time and networking performance for vRAN and MEC workloads.

Industrial Edge (IE)
Optimized for small footprint and low-latency for IoT, serverless, and machine learning workloads.
KNI-Edge blueprint components

- **kni/blueprint-ie**
 - Base configuration to deploy blueprint (kubernetes cluster and workloads)

- **kni/blueprint-pae**
 - Specialization for the different types of deployment: libvirt, AWS, baremetal...
 - https://github.com/akraino-edge-stack/kni-blueprint-pae

- **kni/installer**
 - https://github.com/akraino-edge-stack/kni-installer

- **profiles**
 - Specific configuration for baremetal: real-time tuning, SRIOV, PTP...

- **sites**
 - Individual definition of a site
 - Specific config changes for site: name, domain

- **testing.libvirt**
- **production.baremetal**
- **testing.baremetal.edge-sites.net**
- **production.aws**
Features for Akraino R2

- Integrate fully automated deployment on baremetal
- Add support for real time worker nodes
- Add support for hugepages, CPU allocation, realtime tuning
- Deploy Open Air Interface workload
- Start working on Industrial Edge blueprint
Demo of Declarative Infrastructure Management

Edgy: edge network operator
Download knictl
Create site
Fetch requirements
Prepare manifests

Deploy site
Apply workloads
Happy Edgy
How a site looks like?

```
bases:
- git: https://gerrit.akraino.org/r/kni/blueprint-pae.git//profiles/testing.libvirt/00_install-config

patches:
- install-config.patch.yaml

patchesJson6902:
- target:
  version: v1
  kind: InstallConfig
  name: cluster
  path: install-config.name.patch.yaml

transformers:
- site-config.yaml
```
How a site looks like?

install-config.patch.yaml

```
apiVersion: v1
kind: InstallConfig
metadata:
  name: cluster
baseDomain: virt.edge-sites.net

- op: replace
  path: "/metadata/name"
  value: testing
```

install-config.name.patch.yaml

```
apiversion: v1
baseDomain: example.com
compute:
  - hypethreading: Enabled
    name: worker
    platform: {}
    replicas: 1
controlPlane:
  hypethreading: Enabled
  name: master
  platform: {}
  replicas: 3
kind: InstallConfig
metadata:
  creationTimestamp: null
  name: cluster
networking:
  clusterNetwork:
    - cidr: 10.128.0.0/14
      hostPrefix: 23
    machineCIDR: 192.168.126.0/24
    networkType: OpenShiftSDN
    serviceNetwork:
      - 172.30.0.0/16
  platform:
    libvirt:
      URI: qemu+tcp://192.168.122.1/system
      network:
        if: tt0
    pullSecret: PULL_SECRET
    sshKey: |
      SSH_PUB_KEY
```
Hands on!