Table of Contents

Program with WeDo 2.0
3-21

Build with WeDo 2.0
22-36
Programming is an important part of twenty-first century learning, and it is an essential part of all WeDo 2.0 projects.

It gives life to the models students have created and teaches them computational thinking.

Program with WeDo 2.0
Designing Solutions with LEGO® Programming Blocks

The WeDo 2.0 projects will take you and your students on a journey of using programming concepts to activate models and to create innovative solutions. These programming concepts have been organized by function in the Design Library.

These instructions are provided to inspire your students as they look for solutions. All of these functions can be used as described, or modified to suit a more specific need.
Introduction to a WeDo 2.0 Program String

When students want to bring their models to life, they will drag and drop blocks onto the Programming Canvas. As they do this, your students will be creating program strings. They can create multiple program strings on the canvas, but each of the strings will need to begin with a Start Block.

Here are some important terms to know:

1. **Start Block**
 A Start Block is required in order to start a program string in WeDo 2.0. “Execute” means to start a series of actions until they are completed.

2. **Programming Block**
 Programming blocks are used in WeDo 2.0 software to build a program string. These blocks with symbols are used instead of text-based code.

3. **Program String**
 A program string is a sequence of programming blocks. The last block of the program string marks the end of the program.
Different Types of Program Strings

When students explore programming for the first time, they will probably line up as many blocks as possible on the Programming Canvas. To carry out an idea they have in mind, they will either arrange their blocks in a flow so that they are executed one after the other, or executed simultaneously.

Here are two important terms to know:

1. **Linear Sequence**
 A linear sequence is when blocks are placed one after the other in a linear fashion. The LEGO® Education WeDo 2.0 software will then execute one action after the other in the order in which the blocks have been placed.

2. **Parallel Sequence**
 A parallel sequence should be used when students want to perform two or more actions simultaneously. In this case, the actions should be placed on different program strings and executed at the same time, using the various techniques available in WeDo 2.0.

Suggestion
Tell your students to plan their programs in advance. This will help them when they are deciding the order in which the program actions should take place. They could use the Documentation tool to write the actions they wish to program, step-by-step. They could also use a mind map of their own to decide whether they should use a linear sequence or a parallel sequence.
Programming Principles

In developing program strings as part of their solutions, students will organize a series of actions and structures that will make their models come to life.

Here are some of the simplest programming principles your students can use:

1. Output
 Output is something that is controlled by the program the students are writing. Examples of outputs for WeDo 2.0 are sounds, lights, display, and turning motors on and off.

2. Input
 Input is information that a computer or device receives. It can be inputted through the use of sensors in the form of a numeric or text value. For example, a sensor that detects or measures something (such as distance) converts that value into a digital input signal so it can be used in a program.

3. Events (Wait for)
 Students can tell their program to wait for something to happen before continuing to execute the sequence of actions. Programs can wait for a specific amount of time, or wait for something to be detected by a sensor.

4. Loop
 Students can program actions to be repeated either forever or for a specific length of time.

5. Functions
 Functions are a group of actions that are to be used together in specific situations.
 For example, the group of blocks that could be used to make a light blink would together be called, “the blink function”.

6. Conditions
 Conditions are used by students in order to program actions that are to be executed only under certain circumstances. Creating conditions within a program means that some part of the program will never be executed if the condition is never met. For example, if the Tilt Sensor is tilted left, the motor will start, and if the sensor is tilted right, the motor will stop; if the Tilt Sensor never tilts left, the motor will never start and if it never tilts right, then the motor will never stop.
What is Pseudocode?

Program strings are designed for computers to understand, and pseudocode is a way to explain a program so that people can understand it. Good pseudocode respects program structures, but uses common words.

In WeDo 2.0, pseudocode can also be used to describe each step of a sequence. There are no specific rules to follow when writing pseudocode, but you will see that using a consistent structure will help you and your students while using it.

Example One
1. Start program
2. Start motor at power 1
3. Wait for 1 second
4. Stop motor

Example Two
1. Start program when “A” is pressed
2. Wait for Tilt Sensor to detect Shake
3. Start motor this way
4. Repeat steps 2 and 3 forever

Example Three
1. Start program when “A” is pressed
2. Wait for Tilt Sensor to detect No Tilt
3. Stop motor
4. Turn LED on color 9 (red)
5. Repeat steps 2 and 4 forever
Description of Flow Blocks

1. **Start Block**
 When used, always placed at the beginning of a program string. Press on it to start the program string you have written.

 Pseudocode: Start program

2. **Start On Message Block**
 Always placed at the beginning of a program string. It will wait for the correct message and then start the program string you have written.

 Pseudocode: Start program when receiving message “abc”

3. **Send Message**
 Sends a message to the Programming Canvas. Every Start On Message Block with the same message will be activated. The message can be in the form of text or numbers.

 Pseudocode: Send message “abc”

4. **Wait For**
 Use this block to tell the program to wait for something to happen. It can wait for a set amount of time or for input from a sensor. This block always requires input in order to work properly.

 Pseudocode: Wait for ...
Repeat Block
Use this block to repeat actions. Blocks placed inside the Repeat Block will be looped. This can also be called the “loop block.” The loop can be repeated forever, for a certain amount of time, or until something happens.

Pseudocode: Repeat step ... forever

Start On Key Press Block
When used, always placed at the beginning of a program string. Press on it, or on the correct letter on the keyboard to start the program string you have written. All of the program strings with the same letter will start at the same time. To change the letter of activation, long press on the block to get access to the keyboard.

Pseudocode: Start program on tap “A”
Description of Output Motor Blocks

1. **Motor This Way Block**
 Sets the motor to turn the axle clockwise and starts the motor.
 Tap on the block to quickly change the direction of the rotation.

 Pseudocode: Start motor this way

2. **Motor That Way Block**
 Sets the motor to turn the axle counterclockwise and starts the motor.
 Tap on the block to quickly change the direction of the rotation.

 Pseudocode: Start motor that way

3. **Motor Power Block**
 Sets the motor power to the specified level and starts the motor. The level can be set with a numeric input from 0 to 10.

 Pseudocode: Start motor at power 10

4. **Motor On For Block**
 Starts the motor for a chosen amount of time specified in seconds. The amount of time can be set with a numeric input, using whole or decimal numbers.

 Pseudocode: Start motor for 2 seconds
Motor Off Block
Stops any movement of the motor.

Pseudocode: Stop motor
Description of Light and Sound Blocks

1. **Light Block**
 Lights up the LED on the SmartHub in a specific color. The color can be changed with a numeric input between 0 and 10.

 Pseudocode: Turn LED on to color 9 (red)
 Pseudocode: Turn LED off to color 0 (no color)

2. **Play Sound**
 Plays a sound. The sound is chosen from a list available within the software. You can choose a sound using a numeric input. Choose sound number 0 to play a sound that you have recorded yourself.

 Pseudocode: Play sound number 1
Description of Output Display Blocks

1. Display Background
 Use this block to display an image chosen from a list available within the software. You can set an image using a numeric input.

 Pseudocode: Show image 1 on display

2. Display Block
 Use this block to open the display area on the software screen. Numbers or text will appear in the display area.

 Pseudocode: Show ... on display

3. Add to Display
 Adds a quantity to the number currently shown on the display. Enter the number you wish to add. Tap on the block to change the mathematical operation.

 Pseudocode: Add ... to the number on display

4. Subtract from Display
 Subtracts a quantity from the number shown on the display. Enter the number you wish to subtract. Tap on the block to change the mathematical operation.

 Pseudocode: Subtract ... from the number on display
Program with WeDo 2.0

5. **Multiply Display**
 Multiplies the number shown on the display by a specified number. Enter the number you wish to multiply by. Tap on the block to change the mathematical operation.

 \[
 \text{Pseudocode: Multiply by } \ldots \text{ the number on display}
 \]

6. **Divide Display**
 Divides the number shown on the display by another number. Enter the number you wish to divide by. Tap on the block to change the mathematical operation.

 \[
 \text{Pseudocode: Divide by } \ldots \text{ the number on display}
 \]

7. **Display Closed**
 Use this block to close the display area on the software screen. Tap on the block to change the size.

 \[
 \text{Pseudocode: Close the display}
 \]

8. **Display Full Size**
 Use this block to set the display area to full size. Tap on the block to change the size.

 \[
 \text{Pseudocode: Change the size of the display to maximum}
 \]
Description of Output Display Blocks

Display Medium Size
Use this block to set the display area to medium size. Tap on the block to change the size.

Pseudocode: Change the size of the display to medium
Description of Sensor Change Inputs

1. Any Distance Change
 Inputs the Motion Sensor mode “Any Distance Change” to a block.

2. Distance Change Closer
 Inputs the Motion Sensor mode “decreasing distance between the sensor and an object” to a block.

3. Distance Change Further
 Inputs the Motion Sensor mode “increasing distance between the sensor and an object” to a block.

4. Shake
 Inputs the Tilt Sensor mode “Shake” to a block.

5. Tilt Down
 Inputs the Tilt Sensor mode “Tilt Down” to a block.

6. Tilt Up
 Inputs the Tilt Sensor mode “Tilt Up” to a block.

7. Tilt Left
 Inputs the Tilt Sensor mode “Tilt Left” to a block.

8. Tilt Right
 Inputs the Tilt Sensor mode “Tilt Right” to a block.
Description of Sensor Change Inputs

1. **Tilt Sensor No Tilt**
 Inputs the Tilt Sensor mode “No Tilt” (or horizontal position) to a block.

2. **Sound Sensor Change**
 Inputs the Sound Sensor (from the device) mode “sound level change” to a block.
Description of Numeric and Text Inputs

1. **Tilt Sensor Input**
 Inputs the numeric value generated by the Tilt Sensor (0, 3, 5, 7, or 9) to a block.

2. **Distance Sensor Input**
 Inputs the value detected by the Motion Sensor (from 0 to 10) to a block.

3. **Sound Sensor Input**
 Inputs the value detected by the Sound Sensor (from 0 to 10) to a block.

4. **Number Input**
 Inputs a numeric value to a block.

5. **Text Input**
 Inputs a text value to a block.

6. **Display Input**
 Inputs the numeric value shown on the display area to a block.

7. **Random Input**
 Inputs a random value to a block. The range of numbers is determined by the block to which it is attached.
Description of the Documenting Block

Bubble

Use the bubble to insert comments into your program. This is not a programming block.
Planning Your Work with Flowcharts

Flowcharts are an excellent tool for practicing Abstraction, and they can be a great way to help students plan and structure their solutions.

A simple flowchart can be explored by students at any grade level, but more complex charts should be reserved for students in the higher elementary grades.

Some conventions exist in regard to flowcharts, but you should focus on implementing these conventions only when your students completely understand the concept of mapping their ideas.

These conventions are:

- Use a circle (or oval) to represent the beginning and end of the flow
- Use arrows to indicate the flow direction
- Use a rectangle to indicate an input or output
- Use a diamond to indicate conditions

```
Start

Start motor

Wait for tilt left

Stop motor

Wait For 2 seconds

X 5
```
Build with WeDo 2.0

WeDo 2.0 has been designed to provide opportunities for students to sketch, build, and test prototypes and representations of objects, animals, and vehicles that have a real-world focus.

The hands-on approach encourages students to be fully engaged in the designing and building process.
Designing Solutions with LEGO® Bricks

The WeDo 2.0 projects will take you and your students on a journey of using mechanisms to bring models to life. These mechanisms have been ordered by function in the Design Library.

These instructions are provided to inspire your students as they look for solutions. All of these functions use what are called "simple machines" that you can explore with your students as they develop their ideas.
Base Models Exploration

Name of the Part: Gear
A gear is a toothed wheel that rotates and makes another part move. You can find gear wheels on your bike, they are linked together with a chain. A “gear train” is when gears are placed directly alongside each other.

Types of Gear Trains
Gear up: a large gear drives a small gear in order to produce more rotations.
Gear down: a small gear drives a larger gear in order to produce fewer rotations.

For example, used in these Design Library base models:
Walk, Spin, Turn

Name of the Part: Bevel Gear
A bevel gear is an angled gear that can be placed perpendicular to another gear, changing the axis of the rotation.

For example, used in these Design Library base models:
Flex, Wobble, Push, Turn
Base Models Exploration

Name of the Part: Rack
A rack is a flat element with teeth that engages a circular gear, in this case often called a pinion. This pair of gears change ordinary rotational motion, as the gear turns into linear motion.

For example, used in these Design Library base models:
Push

Name of the Part: Worm Gear
A worm is a continual spiral groove like a screw, which meshes with a gear. The worm is designed to turn a normal gear, but the gear cannot turn the worm, therefore, it functions as a brake.

For example, used in these Design Library base models:
Revolve
Base Models Exploration

Name of Part: Beam
A beam attached to a rotating part will become a piston. A piston is a moving component of a machine, transferring the energy created by the motor into an up/down or forward/backward motion. The piston can push, pull, or drive other mechanical elements of the same machine.

For example, used in these Design Library base models:
Crank

Name of the Part: Wheels
It's a circular element that rotates on an axis to produce propelled movement.

For example, used in these Design Library base models:
Wobble, Drive, Steer
Base Models Exploration

Name of the Part: Pulley
The pulley is a wheel with a groove in it where the belt rests. The belt is like a small rubber band, which connects to a part of the model that is rotating, transferring the rotation to a different part of the model.

Pulley up: a large pulley drives a small pulley to produce more rotations.
Pulley down: a small pulley drives a large pulley to produce less rotations.
Pulley twist: it is used to make shafts that are parallel but rotate in opposite directions.

For example, used in these Design Library base models:
Reel, Lift, Drive, Sweep, Revolve, Grab

Important
Using a pulley in a mechanism will prevent the model from breaking when it meets resistance as the belt will slip in the pulley.
Electronic Parts

Smarthub
The Smarthub acts as a wireless connector among your device and the other electronic parts, using Bluetooth Low Energy. It receives program strings from the device and executes them.

The Smarthub has important features:
• Two ports to connect sensors or motors
• One LED
• Power button

The Smarthub uses AA batteries or the supplementary Rechargeable Battery as a power source.

The Bluetooth connection procedure between the Smarthub and your device is explained in the WeDo 2.0 Software.

The Smarthub will use color patterns to signal messages:
• Flashing white light: it is waiting for a Bluetooth connection.
• Blue light: a Bluetooth connection is established.
• Flashing orange light: the power provided to the motor is at its limit.
Electronic Parts

Smarthub Rechargeable Battery
(Supplementary Item)

Here are some guidelines for the Smarthub Rechargeable Battery:

• To have optimal hours of play without the adaptor connected, fully charge the battery first.
• There is no special demand for a charging pattern.
• Preferably, store the battery in a cool place.
• If the battery is installed in the Smarthub and not used from one to two months, recharge it again after this period.
• Do not let the battery charge for an extended period of time.

Medium Motor

A motor is what makes other things move. This Medium Motor uses electricity to make an axle rotate.

The motor can be started in both directions, can be stopped, and can turn at different speeds and for a specific amount of time (specified in seconds).
Electronic Parts: Sensors

Tilt Sensor
To interact with this sensor, tilt the part in different ways following the arrows.
This sensor detects changes within six different positions:
• Tilt This Way
• Tilt That Way
• Tilt Up
• Tilt Down
• No Tilt
• Shake

Make sure you have the correct icon in your program that corresponds to the position you are trying to detect.

Motion Sensor
This sensor detects changes in distance from an object within its range in three different ways:
• Object moving closer
• Object moving farther away
• Object changing position

Make sure you have the correct icon in your program that corresponds to the position you are trying to detect.
Part Names and Primary Functions

As students use the bricks, you may want to discuss proper vocabulary as well as functions for each part in the set.

- Some of them are structural parts that hold your model together.
- Some parts are connectors that link elements to each other.
- Some parts are used to produce movement.

Important
Remember that these categories are guidelines. Some parts have many functions and can be used in many ways.

Suggestion
Use the cardboard box to help you sort the parts in the WeDo 2.0 storage box. This will help you and your students view and count the parts.
Structural Parts

- **2x - Angular plate, 1x2/2x2, white. No.6117940**
- **6x - Plate, 1x2, white. No.302301**
- **4x - Plate, 1x4, white. No.371001**
- **4x - Plate, 1x6, white. No.366001**
- **2x - Plate, 1x12, white. No.4514842**
- **4x - Beam with plate, 2-modules, black. No.4144624**
- **2x - Roof brick, 1x2/45°, black. No.4121966**
- **2x - Plate, 2x16, black. No.428228**

- **4x - Roof brick, 1x2x2, gray. No.4511537**
- **4x - Roof brick, 1x2x2, gray. No.4511537**
- **2x - Frame plate, 4x4, gray. No.4612621**
- **4x - Tile, 1x8, gray. No.4211481**
- **4x - Brick, 2x2, azure blue. No.46036238**
- **2x - Brick, 2x4, azure blue. No.4625629**
- **2x - Curved plate, 1x4x2/3, azure blue. No.6097093**
- **2x - Round plate, 4x4, azure blue. No.6102828**
- **2x - Curved brick, 1x6, transparent light blue. No.6032418**
- **2x - Studded beam, 1x12, lime green. No.6132377**
- **2x - Studded beam, 1x16, lime green. No.6132379**

- **2x - Tile, 1x2, azure blue. No.4649741**
- **6x - Brick, 1x2, azure blue. No.6092874**
- **2x - Brick, 1x4, azure blue. No.6163657**
- **2x - Brick, 1x4, lime green. No.6132370**
- **2x - Curved beam, 1x8, lime green. No.6132375**
- **2x - Curved brick, 1x6, lime green. No.6139693**
- **4x - Roof brick, 1x2/2/3, bright orange. No.6024286**
- **4x - Inverted roof brick, 1x2/45°, bright orange. No.6136455**
- **4x - Roof brick, 1x3/25°, bright orange. No.6131583**
- **4x - Brick, 2x4, bright orange. No.6100027**
- **4x - Plate with holes, 2x4, bright orange. No.6132408**
- **4x - Plate with holes, 2x6, bright orange. No.6132409**

Build with WeDo 2.0
Build with WeDo 2.0

Connecting Parts

2x - Brick with stud on side, 1x1, white. No.4518912

4x - Bushing, 1-module, gray. No.4211622

2x - Bushing/axle extender, 2-module, gray. No.4211622

4x - Studded beam with crosshole, 1x2, gray. No.4558952

2x - Brick with connector peg, 1x2, gray. No.4211364

4x - Bushing, 1-module, gray. No.4239891

1x - Plate with hole, 2x3, gray. No.4211419

4x - Studded beam with crosshole, 1x2, dark gray. No.4210935

1x - String, 50 cm, black. No.6123991

4x - Connector peg, with friction, 2-modules, black. No.6123991

2x - Brick with 2 ball joints, 2x2, black. No.8092732

2x - Brick with connector peg, 1x2, gray. No.4211364

1x - Brick with stud on side, 1x1, white. No.4118981

8x - Connector peg, with friction, 2-modules, black. No.4121715

2x - Brick with ball bearing, 2x2, transparent light blue. No.6049280

2x - Angular block 3, 157.5°

4x - Connector peg, without friction/ axle, 1-module/1-module, beige. No.4665579

2x - Angular block 4, 135°

4x - Brick with connector peg, without friction/ axle, 1-module/1-module, lime green. No.8097773

2x -angular block 2, 90°

1x - String, 50 cm, black. No.6123991

4x - Connector peg, with friction, 2-modules, black. No.4121715

2x - Brick with ball bearing, 2x2, transparent light blue. No.6049280

2x - Angular block 3, 157.5°

4x - Brick with connector peg, without friction/ axle, 1-module/1-module, lime green. No.8097773

2x - Angular block 4, 135°

4x - Connector peg, without friction/ axle, 1-module/1-module, beige. No.4665579

4x - Ball with crosshole, bright orange. No.6071608

4x - Bushing/pulley, ½-module, yellow. No.4239601

2x - Chain, 16-modules, dark gray. No.4516456

1x - Bobbin, dark gray. No.4239891

2x - Angular block 1, 0°

2x - Bushing/axle extender, 2-module, gray. No.4512360

2x - Angular block 2, 90°

1x - Brick with 2 ball joints, 2x2, black. No.8092732

2x - Angular block 3, 157.5°

1x - String, 50 cm, black. No.6123991

2x - Angular block 4, 135°

2x - Tube, 2-modules, bright green. No.6097400

2x - Brick with connector peg, without friction/ axle, 1-module/1-module, beige. No.4665579

4x - Bushing/pulley, ½-module, yellow. No.4239601

©2016 The LEGO Group.
Movement Parts

6x - Hub/pulley, 18x14 mm, white. No.6092296

4x - Gear rack, 10-tooth, white. No.4250485

4x - Gear, 8-tooth, dark gray. No.6012451

2x - Gear, 24-tooth, dark gray. No.6133119

1x - Gear block, transparent. No.4142824

6x - Hub/pulley, 24x4 mm, transparent light blue. No.6096296

1x - Worm gear, gray. No.4211510

2x - Rubber beam with crossholes, 2-modules, black. No.4198367

2x - Double bevel gear, 12-tooth, black. No.4177431

2x - Double bevel gear, 20-tooth, black. No.6093977

2x - Connector peg with axle, 3-modules, black. No.6089119

2x - Axle, 3-modules, gray. No.4211815

2x - Axle with stop, 4-modules, dark gray. No.6083620

2x - Axle, 6-modules, black. No.370626

2x - Axle, 7-modules, gray. No.4211805

2x - Axle, 10-modules, black. No.373726

4x - Axle, 2-modules, red. No.4142865

2x - Bevel gear, 20-tooth, beige. No.6031962

2x - Belt, 33 mm, yellow. No.4544151

2x - Snowboard, bright orange. No.6105957

2x - Belt, 24 mm, red. No.4544143

2x - Tire, 30.4x4 mm, black. No.6028041

2x - Tire, 30.4x14 mm, black. No.4619323

2x - Tire, 37x18 mm, black. No.4506553
Decorative Parts

- **2x - Antenna, white. No. 73737**
- **2x - Round tile with eye, 1x1, white. No. 6029156**
- **2x - Round tile with eye, 2x2, white. No. 6060734**
- **2x - Round plate with 1 stud, 2x2, white. No. 6093053**
- **2x - Round tile with hole, 2x2, dark gray. No. 6055313**
- **4x - Round plate, 1x1, black. No. 614128**
- **6x - Skid plate, 2x2, black. No. 4278359**
- **2x - Round brick, 1x1, transparent green. No. 3006848**
- **2x - Grass, 1x1, bright green. No. 6050929**
- **2x - Round plate, 2x2, bright green. No. 6138624**
- **1x - Leaves, 2x2, bright green. No. 4143562**
- **2x - Round brick, 1x1, transparent yellow. No. 3006844**
- **2x - Round brick, 1x1, transparent red. No. 3006841**
- **1x - Flower, 2x2, red. No. 6000020**
- **1x - Element separator, orange. No. 4654448**

Brick Separator

- **1x - Element separator, orange. No. 4654448**
Electronic Parts

1x - Tilt Sensor, white. No.6109223

1x - Motion Sensor, white. No.6109228

1x - Medium Motor, white. No.6127110

1x - Smarthub, white. No.6096146
LEGO® Education WeDo 2.0