NC Math 3 Standards

Explain volume formulas and use them to solve problems.
G-GMD.3 Use the volume formulas for prisms, cylinders, pyramids, cones, and spheres to solve problems.

Visualize relationships between two-dimensional and three-dimensional objects
G-GMD.4 Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

Apply geometric concepts in modeling situations.
G-MG.1 Apply geometric concepts in modeling situations
- Use geometric and algebraic concepts to solve problems in modeling situations.
- Use geometric shapes, their measures, and their properties, to model real-life objects.
- Use geometric formulas and algebraic functions to model relationships.
- Apply concepts of density based on area and volume.
- Apply geometric concepts to solve design and optimization problems.

Prior knowledge:
- Students can identify shapes by their appropriate names.
- Students can identify the measurements necessary to calculate the volume.
- Students understand the relationship between radius and diameter of a circle.
- Students understand volume is measured in unit cubes.
- Students can calculate the area of squares, rectangles, triangles and circles.
- Students can calculate the perimeter of circles and polygons.
Explain volume formulas and use them to solve problems.

G-GMD.3 Use the volume formulas for prisms, cylinders, pyramids, cones, and spheres to solve problems.

| Level 1 | Students can calculate the volume of a three dimensional shape given
| | - a three dimensional shape (prism, cylinder, pyramid, cone and/or sphere)
| | - measurements labeled or enough information to determine the measurements (ex: the length is twice the height)
| | - volume formula sheet
| | Find the volume of each shape: |
| | ![Volume of an 14 ft cone](image.png)
| | ![Volume of a KC Apple Juice](image.png)
| Level 2 | Students can adjust volume calculations in order to solve problems given
| | - partial or composite three dimensional figures
| | - measurements labeled or enough information to determine the measurements needed (ex: diameter given and radius needed)
| | - volume formula sheet
| | Students can solve for a measurement of a three dimensional figure given
| | - drawing or description of a three dimensional figure
| | - the volume of the figure
| | - all measurements except one missing measurement
| | Find the volume of each figure
| | ![Volume of an ice cream](image.png)
| | ![Volume of a cube](image.png)
| | The volume of a square pyramid is 180 ft³ and has a height of 10 ft. Find the length of the side of the base.
| Level 3 | Students can solve multi-step volume problems given
| | - drawing or description of three dimensional figure(s)
| | - measurements of the figure
| | - at least one additional aspect of the problem
| | A toy manufacturer has designed a new piece for use in building models. It is a cube with side length 7 mm and it has a 3 mm diameter circular hole cut through the middle. The manufacturer wants 1,000,000 prototypes. If the plastic used to create the piece costs $270 per cubic meter, how much will the prototypes cost?
| | ![Multi-step volume problem](image.png)

A golden-colored cube is handed to you. The person wants you to buy it for $100, saying that is a gold nugget. You know gold should weight 19.3 g per cubic centimeter. You measure the cube and find that it is 2 cm on each side, and weighs 40 g. Should you buy the cube? Why or why not?

A cylinder has a radius of 4 in and a height of 9 in. What would be the height of a cone with the same radius and the same volume?

Level 4

Students can use the proportional relationships between figures to compare
- the volume of cones, cylinders and spheres with the same radius
- the volumes of pyramids and prisms with congruent bases and same height

If the volume of a rectangular pyramid is $93\frac{1}{3}$ ft3, what is the volume of a prism with a congruent base and the same height?

If the volume of a sphere is $240\frac{2}{3}$ ft3, what is the volume of the cylinder with the same radius and double the height?

Visualize relationships between two-dimensional and three-dimensional objects

G-GMD.4 Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

Level 1

Given a
- drawing of a three dimensional object intersected by a plane or
- physical three dimensional object with ability to slice it with a plane

Students can
- draw the two dimensional cross section
- identify the two dimensional cross section
- define the cross section as the intersection of a plane and a three dimensional object

A plane can intersect a cylinder in different ways. Draw and describe the cross section formed for each of the cylinders on the right.
<table>
<thead>
<tr>
<th>Level 2</th>
<th>Given</th>
<th>Consider the intersection of a plane and a cone. If the plane were parallel to the base of the cone, what would be the shape of the cross section?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>● a three dimensional object and ● instructions on how to slice it by a plane (e.g. parallel to the base, through opposite edges, etc)</td>
<td>Draw a vertical and a horizontal cross section of the rectangular prism and identify each.</td>
</tr>
<tr>
<td>Students can</td>
<td>● draw the plane within the three dimensional figure ● identify the three dimensional cross section</td>
<td></td>
</tr>
</tbody>
</table>

Visualize relationships between two-dimensional and three-dimensional objects

G-GMD.4 Identify the shapes of two-dimensional cross sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Given a ● simple two dimensional shape and an axis of rotation ● set of possible three dimensional objects</th>
<th>Which of the following is generated by rotating the two dimensional shape around the given axis?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Students can ● identify the three dimensional object generated</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 2</th>
<th>Given a ● two dimensional shape and various axes of rotation ● set of possible three dimensional objects</th>
<th>Select all of the shapes that can be generated by rotating the two dimensional shape around any of the axes given.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Students can ● identify all the possible three dimensional object generated</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 3</th>
<th>Given a three dimensional object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students can</td>
<td>describe or draw the two dimensional shape that generated the three dimensional object</td>
</tr>
</tbody>
</table>

Draw the two dimensional shape and indicate the axis of rotation that generates the three dimensional object.

Apply geometric concepts in modeling situations.

G-MG.1 Apply geometric concepts in modeling situations
- Use geometric and algebraic concepts to solve problems in modeling situations.
- Use geometric shapes, their measures, and their properties, to model real-life objects.
- Use geometric formulas and algebraic functions to model relationships.
- Apply concepts of density based on area and volume.
- Apply geometric concepts to solve design and optimization problems.
| Level 1 | Students can identify shapes and formulas relevant to the context.
Students show at least one attempt to investigate or solve the task. |
|--------|---|
| Level 2 | Students can represent with the situation with a correct model.
Students can analyze and perform operations with their model. The operations and analysis lack attention to detail. |
| Level 3 | Students can analyze and perform operations accurately with their model to draw conclusions. |

3. Derive the formula to calculate the volume of unused space given the figure on the right. Let \(r \) be the radius of the sphere.

\[
V = \pi r^2 h
\]

\[
V = \frac{1}{3} \pi r^3
\]

\[
\pi r^2 h - \frac{1}{3} \pi r^3
\]

- Student understands that the volume of a cylinder and volume of a sphere are required. Makes an attempt to write the formula. Does not attend to the model having 3 spheres or that the formula should be in terms of \(r \).
- Student has a correct model using subtraction to calculate the empty space and recognizes there are 3 spheres. Lack of detail that the height of the cylinder is \(6r \) and not \(3r \). Doesn't recognize that the answer does not make sense (i.e. cannot have negative space).
- Student has a correct answer and solution process is accurate.
| Level 4 | Students can interpret their results. Students validate their conclusions by comparing them to the situation and either improve the model (when needed) or report their conclusions. |

| | 3. Derive the formula to calculate the volume of unused space given the figure on the right. Let r be the radius of the sphere. $V = \pi r^2(b r)$
$V = 3(\frac{1}{3}\pi r^3) - \frac{2}{3}\pi r^3$
The empty space is $\frac{1}{3}$ of the volume of the cylinder. |

| | Student relates the solution back to original situation and makes a comparison between empty space and volume of cylinder. This extension of knowledge may require or become evident during class discussion and/or extension questions. |