MSU is an affirmative-action, equal-opportunity employer. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, sex, gender, gender identity, religion, age, height, weight, disability, political beliefs, sexual orientation, marital status, family status or veteran status.
Teaching science when you don’t know diddly-squat!

• You do not need all the answers to teach science.
• You simply need an inquisitive mind and to be willing to carry out an investigation.
Language of Science

• Draw or paint a picture using words
• Have to use words that you know and understand
• Then build on those words, scaffold learning, spiral your way to more advanced vocabulary
• Science is the language we all speak everyday
Science is NOT....

• Knowing all the answers
Science is NOT….

• Knowing all the answers
Science IS….asking questions

• Where do you think we might find those bugs?
• What time of day would be best to catch them?
• How might poisonous bugs and edible bugs be different?
• How could we test those ideas?
Science is not ... what you find on the internet!
Science is NOT....

• Following a recipe
Recipes are directions
Science is a map
Purpose

• Engage youth in the process of science.

• Encourage youth to ask questions AND discover answers
Science and Engineering Practices

• Asking questions and defining problems
• Developing and using models
• Planning and carrying out investigations
• Analyzing and interpreting data
• Using mathematics and computational thinking
• Constructing explanations and designing solutions
• Engaging in argument from evidence
• Obtaining, evaluating, and communicating information
Science and Engineering Practices

• What are they?
 – Research based best practices for engaging youth in science.

• Where did they come from?
 • Available free on-line
Science and Engineering Practices

• Why do we care?
 – Research based
 – Part of Michigan’s science expectations
How to use Diddly-squat with Youth

• Ignore the Science and Engineering Practices – They are talking points to help support and continue the science work you do.

• Focus on the **QUESTIONS** and on engaging youth in **scientific conversations**

• Conversations that attempt to answer why?
Failure

• Failure is…
 – An unexpected learning opportunity!!
 – Enriched by questions and discussion
Failure

• Adults should provide challenges so youth discover failure can be more rewarding than success.
Exploring a phenomena

• Does the type of paper make a difference in a paper airplane?
What type of paper makes the best paper airplane?

• What does best mean?
 • Farthest?
 • Resistance to damage?
 • Other?

• Does the size or shape of the paper matter?
 • Why or Why not?

• Does the shape of the paper airplane matter?
 • Why or why not?
Build your paper airplanes

- Airplanes should only fly in the TESTING AREA
Analyze and interpret your data

• Did the type of paper make a difference?
• Did the style of the plane matter? Why?
• Which paper made the best paper airplane?
 – Why do you think that type of paper worked better than the others?
Using math and computational thinking

• Consider combining data from multiple groups for a larger data set
 – Could this cause problems? Why? Why not?

• Find the
 – Mean (average)
 – Median (middle number)
 – Mode (most common number)
For each paper type – what do you notice?
Constructing Explanations

• Discuss why and how the planes flew, focusing on the types of paper.
Argument for Evidence

• Summing it up
 – Have each youth decide which paper worked the best and justify their answer.
 • Explain why they think as they do
Obtain, evaluating and communicating information

• Discuss as a group
 – The types of paper used
 – The types of paper airplanes used

If different types of airplanes were used the conversation can be richer.
Real World Application

• Can you think of circumstances when different types of materials make a difference in real airplanes?
• What would cause a plane to fly farther?
• Would some designs be better in different weather?
• Can you think of times when the materials used is important?
Questions

• Ask youth why they think something happened is equally important …
 • When they are correct
 • When they are incorrect

• Responding to why is similar to a personal reflection, adds ownership to the learning.
Life Skills Development

• Problem Solving
• Critical Thinking
• Decision Making
• Learning to Learn
• Creative Thinking
• Communication
Are you left- or right handed, and does it matter?

• In your small groups work through another lesson.
Teaching Science When You Don’t Know Diddly-Squat Introduction:
- Introduction: What is the answer? Who cares?

Teaching Science When You Don’t Know Diddly-Squat Activities:
- Can you hear better with paper ears?
- Why does poop splash?
- What if ice didn’t float?
- Why do cows have tails?
- Why is a hammer shaped like a hammer?
- Can you make an animal move without touching it?
- Does texting affect safe driving?
- Do moms really have eyes in the back of their heads?
- How do puddles disappear?
- Do different types of milk taste different?
- Does the type of paper make a difference in paper airplanes?
- Why do some things float and others sink?
- Does technology make our lives easier?
- Does color affect our sense of taste?
- Are you left or right-handed, and does it matter?
Any Questions?

daugustt@msu.edu