WHO IS WAYNE COUNTY?

- 33 Public School Districts
- Over 100 Public School Academies
- Serving 272,000 students
 - 36,000 English Learners
 - 34,000 Students with Disabilities
 - 176,000 (65%) Economically Disadvantaged
- 75 Schools identified as “Comprehensive Support and Improvement”

Michigan’s Center for Educational Performance and Information, Student Count for Wayne RESA, All Schools, All Grades and All Students (2018-19).

Our Why?

- Districts in Wayne County wanted to align their assessments and instruction to NGSS.
- If we are moving towards a sense-making and phenomenon-based instructional model, our assessments must match.
- Districts in Wayne County were struggling to write 3-D test items.
- “Box” curricula that districts purchased or were exploring to purchase promised to have 3-D and NGSS-aligned assessments.
Vision:
Defining Balanced Assessment

Source: TJ Smolek, MDE

"The idea of an assessment system begins with a common sense point that no one assessment - or assessment occasion - can meet all the needs for the information about what students know and are able to do in science."

Seeing Students Learn Science, NASEM, 2017

Source: TJ Smolek, MDE
Wayne RESA Collaborative Process

1. Gathered a team of diverse districts from the County
 a. 9 Districts, 2 PSA (40 participants; elementary and secondary)
2. Reviewed the TAPS prescreen rubric and came to group consensus.
3. Looked to answer: “What does it look like to ask students to demonstrate progress toward three-dimensional standards?” and “What are the most important features of high-quality science tasks?”
4. Created a Google Form version of TAPS Pre-Screener rubric to allow groups to review the assessment items and “red flag” elements that were missing or incomplete.
5. Reviewed the findings from the Google Form and found that many items warranted further review and evaluation.
Vision: Purposes / Must Haves / Trade-Offs

Task Annotation Project in Science (TAPS) Documents for Guidance

Science assessment tasks designed for the Next Generation Science Standards (NGSS) and similar three-dimensional standards can—and should—come in all different forms. To really help all students develop proficiency in science, they need feedback from different kinds of assessments, including quick checks during the process of learning, conceptual deep-dives and authentic transfer tasks, and those assessments designed to tell us how whole classrooms, schools, and districts are progressing. With so many different purposes and uses of assessments, it has been tricky to identify what really is a three-dimensional assessment apart from a traditional assessment.

The Task Annotation Project in Science (TAPS) surfaced some features that readily distinguish NGSS tasks from science tasks that are not designed for the NGSS—the “must haves” of any NGSS assessment.

To be considered designed for three-dimensional standards, assessment tasks must...

✓ Be focused on a phenomenon or problem. To reveal how well students understand and can use the three dimensions, assessment tasks must focus on making sense of a phenomenon or addressing a problem.

✓ Require students to engage in sense-making. Perhaps the most important shift for NGSS assessments is that they must ask students to actively engage in sense-making as the central goal of the assessment. This means assessment tasks should emphasize reasoning as the way students show their understanding of science ideas and practices, rather than rote ideas and procedures.

✓ Require students to use both science ideas and practices. From exit tickets to final exams, students must be required to use at least one science and engineering practice and use core ideas together as part of their sense-making process. This is the floor, not the ceiling; the more comprehensive the assessment, the higher the bar for what students need to demonstrate. For more information about assessing the three dimensions, see these resources on assessing practices and crosscutting concepts.

✓ Make sense to students. All assessment tasks need to be coherent and understandable to the students being asked to respond. This means that tasks use as many words as needed, but no more; provide students with enough information that the full range of students expected to respond to the task can understand what’s going on and what’s being asked of them; and that tasks are scaffolded logically and with purpose from the student perspective, such that students understand how each part of the task builds toward making sense of the phenomenon or problem they are addressing.

✓ Support the intended purpose and use. Tasks have different purposes, and it’s important that each task is designed to provide evidence to meet that purpose. For example, lesson exit tickets may focus more on the specific parts of practice, core ideas, and crosscutting concepts that were addressed in the lesson without focusing on the full grade-band expectations, while end of course exams may emphasize students’ ability to transfer their grade-appropriate understanding to new contexts and be able to use multiple practices, core ideas, and crosscutting concepts together. It is critical that assessments are designed to support their intended purpose and use—and that we are transparent about what is being assessed and what isn’t.

Looking for a quick check of whether an assessment task includes these non-negotiables? Check out the Science Task Designer tool to help identify major red flags, and the Science Task Screener to support an in-depth analysis of assessment tasks.
<table>
<thead>
<tr>
<th>Non-negotiables/Must haves</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be focused on a phenomenon or problem.</td>
<td>To reveal how well students understand and can use the three dimensions, assessment tasks must focus on making sense of a phenomenon or addressing a problem.</td>
</tr>
<tr>
<td>Require students to engage in sense-making</td>
<td>This means assessment tasks should emphasize reasoning as the way students show their understanding of science ideas and practices, rather than rote ideas and procedures.</td>
</tr>
<tr>
<td>Require students to use both science ideas and practices.</td>
<td>From exit tickets to final exams, students must be required to use at least one science and engineering practice and one core idea together as part of their sense-making process. Science Practices and Crosscutting Concepts</td>
</tr>
<tr>
<td>Make sense to students.</td>
<td>All assessment tasks need to be coherent and understandable to the students being asked to respond.</td>
</tr>
<tr>
<td>Support the intended purpose and use.</td>
<td>Tasks have different purposes, and it is important that each task is designed to provide evidence to meet that purpose. It is critical that assessments are designed to support their intended purpose and use—and that we are transparent about what is being assessed and what isn't.</td>
</tr>
</tbody>
</table>
Science Task Prescreen

Task Title ____________ Grade _____ Date ____________

SEP: ______________ DCI: ______________ CCC: ____________

Task Purpose:

Before you begin: Complete the task as a student would. Then, consider any support materials provided to teachers or students, such as contextual information about the task and answer keys/hubrics.

Prescreen: Answer the following high-level questions to identify any major red flags (red) in your task. If you find one or more red flags, consider the purpose of the task and the evidence gathered to determine whether the task warrants a deeper dive.

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is there a phenomenon or problem driving the task?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Can the majority of the task be answered without using information provided by the task scenario?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Can significant portions of the task be answered successfully by using rote knowledge (e.g., definitions, prescriptive or memorized procedures)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Does the majority of the task require students to use reasoning to successfully complete the task?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Does the task require students to use some understanding of disciplinary core ideas to successfully complete the task?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Do students have to use at least one science and engineering practice to successfully complete the task?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Are the dimensions assessed separately in the majority of the task?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Is the task coherent and comprehensible from the student perspective?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on your assessment needs and the task purpose recorded above, make a recommendation about this task moving forward (choose one):

- [] Warrants further review.
- [] Should not be used.
Let’s Practice

- Use the Pre-Screener as a guide
 - Determine which “boxes” the task checks
- Does it warrant further review, or should it not be used?
Annotated Test Item

✗ Compare your thinking with the annotated version.
 ✓ Which pieces do you agree with?
 ✓ Which pieces do you disagree with?
✓ How do you see this being used in your local context?
 ✓ How might you use this process with your colleagues and local assessments?
✓ Go slow to go fast!
How can we do this back in our district?

1. Ensure common understanding of non-negotiables for science assessment tasks found in TAPS documentation.
2. Follow the guidelines on the Task Pre-Screener.
3. If the task warrants further review, use the Task Screener - Follow the guidelines on the Screener.
Contact Information

Nathan Spencer
spenceN@resa.net

Heather Rottermond
rotterH@resa.net
@hrottermond