Missed Connections: Reuniting alternative students with their environment through a cross-curriculur day in the field

Samantha Lichtenwald
lichtenwalds@bachs.us

Biology & Env. Science Teacher (grades 9-12)
Attendance Coordinator
Bay-Arenac Community High School
Essexville, MI (Saginaw Bay Region)
Cross-Curricular Unit

Program Justification

- Observing a struggle to see the importance of water quality & fisheries in GL
 - students aren’t connected to their environment
 - staff needs guidance to incorporate Great Lakes Literacy into content areas
 - local community members lack environmental awareness

This is a huge problem as our community
claims to be the “Gateway to the Bay” in Essexville, MI
Cross-Curricular Unit

Program Goals

- Increase Great Lakes Literacy of students, staff, and community
- Engage students in a Place-based Stewardship initiative to promote a sense of pride and citizenship in their community
- Connect at-risk youth with community members and local organizations to encourage healthy relationships and positive perceptions of all involved
- Provide opportunities for students to apply their knowledge and skills across the content areas
- Encourage higher attendance rates of students at our school
The Community

General Characteristics

- Primarily residential community of commuters
- Over 85% single family homes owner occupied
- Woodside Ave Business District
 - convenience and specialty stores
- Saginaw River waterfront utilized for bulk storage of petroleum products, cement, stone, and agricultural products
- Closest port to Saginaw Bay

Source: https://essexville.org/
The Community

Demographics

- Area: 1.41 sq. miles (1.3 land, 0.11 water)
- Population: 3,478 (2010 US Census)
- Housing: 1,527 housing units
- Median Housing Value: ~$84,084 (2011)
- Median Housing Income: ~$48,535 (2011)

Source: https://essexville.org/
The Community

Community Calendar

2018:
Feb 13 - city council meeting
Feb-Dec - recycling schedule

Community Events

August 2018:
Curb Appeal Contest

Source: https://essexville.org/
The Community

Resources to Protect the Environment

Saginaw River Cleanup

Regional Collaboration to Protect and Cleanup the Saginaw River

A partnership that included the City of Essexville, Hampton Charter Township and the Road Commission for Bay County which represented all municipal owners of the West Bay County Regional Wastewater Treatment Plant (WBCRTP) completed a multi-year $32 million environmental improvement project in 2011 that encompassed:

Resources to Learn More About Protecting our Environment

The Michigan Department of Environmental Quality, Bay County Drain Office and the Bay Area Storm Water Authority (BASWA) publish and make available to the public literature and guidance regarding environmental stewardship.

- Environmental Assistance Bulletin
- Materials Banned From Landfills
- How To Keep Our Rivers Clean
- Teaching About the Environment (BASWA)
- How to Report an Illicit Discharge
- Recycling And Composting

Source: https://essexville.org/
The Community

Resources to Protect the Environment - “How to Keep Our Rivers Clean” Link

How To Keep Our Rivers Clean

1. Don’t allow grass clippings to get into the storm sewers.

2. Don’t allow animal waste to get into the storm sewer. Keep your pet waste picked up and your yard clean to avoid rain water from flushing contaminates into the storm sewers.

3. If you fertilize your lawn areas, only use fertilizers labeled as "Phosphate Free." For example, the label would read 90-0-5 with the middle number always having to be zero. Do not over fertilize your yard. Follow the directions on the package. If you use pesticides around your home, always follow the manufacturer’s directions. Don’t rinse fertilizer or pesticide containers outside where the run off could enter the storm sewers.

4. Never pour any chemicals, oils, or detergents into the streets or storm sewers.

Source: https://essexville.org/
The Community

Resources to Protect the Environment - “Teaching about the Environment” Link

Source: https://essexville.org/

This Public Education Plan (PEP) is submitted to the Michigan Department of Natural Resources & Environment to fulfill those requirements of the National Pollutant Discharge Elimination System General Permit No. MIG610000 for Storm Water Discharges by the Bay County Urbanized Area. This PEP is designed exclusively for use by the Bay County Urbanized Area Storm Water Authority (Authority) and its use is limited to the members of the Authority. The Authority is comprised of the following member municipalities:
The School

The mission of Bay-Arenac Community High School is to provide a positive community for up to 150 students each semester in learning the skills necessary for attaining personally meaningful lives, which are economically productive and socially responsible.
The School

Staff
- 7 teachers
- 5 administrators
- 2 support staff

Academic Programs
- In-seat Classes (~120 students)
- Online Academy (~50 students)
My Background

Education
- A.A. Liberal Arts - Delta College, Bay City
- B.S. Biology (natural resources) - CMU, Mt. Pleasant
- M.A. Educational Studies - U of M, Ann Arbor

Professional Experience (natural resources)
- Plant Systematics Lab and Herbarium - CMU
- Waterfowl Survey and Trail Mapping - DNR Field Office, Paris
- Electrofishing Technician - Department of Biology, CMU
- Field Assistant, Michigan Marsh Bird Survey - MNFI, Harrison
My Background

Professional Experience (community development)

- Community Liaison, River Town Outreach Corps, SCA
 - to help communities recognize the river as an asset around which civic and economic development can occur, and thus a resource worthy of protection
- Peer Mentor and Program Coordinator, BUMP, CMU
 - to promote biological research by undergraduate students from historically underrepresented groups with the goal to attend graduate school
My Background

Professional Experience (education)

- Science Teacher - Bay-Arenac Community High School, Essexville

 - Current Courses: biology, environmental science, environmental ethics, ecology, E2020
 - Summer Courses: sustainable gardening and food nutrition, botany

- Environmental Educator Certification - MAEOE

 - Expected fall 2019
Bay City State Park - 2018, Year One

Overview

- Full day of rotating sessions hosted by DNR, Little Forks, Consumer’s, naturalists
- nature hike, macroinverts, water chemistry, shoreline habitat assessment, natural history museum exploration, lagoon turbidity, invasive species hunt
- Major participating classes: chemistry, math, env. science, biology, journalism
Bay City State Park - 2018, Year One

Student Survey
- Not enough choice: sessions and student groups

Staff Feedback
- Miscommunications between park and us, including bus parking
- Not as much hands-on activities as expected
- Not enough help from others - needed more guidance
Professional Development & Networking

2018 PD Schedule

Annual Conference

“Advanced Methodology: All Write, All Right, Alright!!”

“Fish and Wildlife Management Week”

“Rain Garden Workshop for Educators”

“Summer Institute: Fisheries”

65th Annual Conference
Professional Development & Networking

2019 PD Schedule

- 66th Annual MSTA Conference | Grand Rapids, MI
- Great Lakes Conference | Lansing, MI
- Project FISH Workshop | Iosco County, MI
- Sturgeon and Biodiversity Workshop | Onaway, MI
- Academy of Natural Resources Classic | RAM Center on Higgins Lake
- 2019 Lake Huron Place-Based Stewardship Education Summer Institute | Grayling, MI
- 2019 State of the Bay Conference | Bay City, MI
- 2019 MAEOE Annual Conference | Ketunnen Center in Tustin, MI
Curriculum

Current and Coming Soon
Community Connections & Partners

Meaghan Gass, MSU Ext. and MI Sea Grant
Brandon Schroeder, MSU Ext. and MI Sea Grant
Michelle Vanderhaar, US Fish and Wildlife Service
Bay City State Park
Local Church
Essexville City Council
Local Businesses
School Neighbors
Community Organizations
Funding and Grants

Where to get funding

- PD teacher and/or project stipends
- Local non-profits (e.g. Bay Community Foundation)
- Lowes and Home Depot
- Michigan Nature Association (MNA - field trip grants)
- Wheels to Woods
- USFWS
- MAEOE
- Local businesses
Staff and Admin Reception

Administration
- “I love it! - Rick, make sure she has money to do the science stuff.”

Initial Reaction
- “I don’t do science.”
- “How would I connect that with my standards?!”

Current Attitude
- “I am willing, but I need you to tell me what to do.”
- “Once you said ‘scrapbooking’, I was hooked!”
- “Can I have monarch butterflies in my classroom?”
Planning Committee

Meaghan Gass, MI State Ext. & MI Sea Grant

Becky Baranski, English Teacher

Me, Life Sciences Teacher
Great Lakes Literacy

8 principles to guide our efforts

1. The Great Lakes, bodies of fresh water with many features, are connected to each other and to the world ocean.
2. Natural forces formed the Great Lakes; the lakes continue to shape the features of their watershed.
3. The Great Lakes influence local and regional weather and climate.
4. Water makes Earth habitable; fresh water sustains life on land.
5. The Great Lakes support a broad diversity of life and ecosystems.
6. The Great Lakes and humans in their watersheds are inextricably interconnected.
7. Much remains to be learned about the Great Lakes.
8. The Great Lakes are socially, economically, and environmentally significant to the region, the nation and the planet.
Timeline

April 29-May 3

Monday = background in each class

Tuesday = Field Trip to State Park (whole school); educational sessions in AM, fun sessions in PM

Wednesday = debrief/create for symposium or extend background

Thursday = debrief/create for symposium or extend background

Friday = culminating symposium and Monarch Festival
Culminating Symposium & Monarch Festival

- Students "present" or host tables of information
- Invitations to
 - Parents
 - community members
 - school board
 - participating organizations/people, etc
- Hoping to also have a fish fry!
Additional Programming

- Adopt a Beach
- School Drinking Fountains - bottle refilling stations and reusable water bottles
- Cafeteria Culture
- Consumers Energy Audit - homes and school
- Students for Zero Waste
- Michigan Green Schools
- Terracycling
- School Recycling - training elementary/middle schoolers on recycling and background of recycling
Additional Programming

- Watershed Stencils
- Project FISH
- Nature Journaling
- Lake Huron PBS
- Great Lakes Stewardship
- Lake Sturgeon and Salmon in the Classroom
- Bay Sail - Tall ship sailing and water chemistry testing
Standards

H.S. Interdependent Relationships in Ecosystems

HS-LS2-1. Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales. [Clarification Statement: Emphasis is on quantitative analysis and comparison of the relationships among interdependent factors including boundaries, resources, climate, and competition. Examples of mathematical comparisons could include graphs, charts, histograms, and population changes gathered from simulations or historical data sets.] [Assessment Boundary: Assessment does not include deriving mathematical equations to make comparisons.]

HS-LS2-2. Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. [Clarification Statement: Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data.] [Assessment Boundary: Assessment is limited to provided data.]

HS-LS2-6. Evaluate claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. [Clarification Statement: Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood; and extreme changes, such as volcanic eruption or sea level rise.]

HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.* [Clarification Statement: Examples of human activities can include urbanization, building dams, and dissemination of invasive species.]

HS-LS2-8. Evaluate evidence for the role of group behavior on individual and species' chances to survive and reproduce. [Clarification Statement: Emphasis is on: (1) distinguishing between group and individual behavior, (2) identifying evidence supporting the outcomes of group behavior, and (3) developing logical and reasonable arguments based on evidence. Examples of group behaviors could include flocking, schooling, herding, and cooperative behaviors such as hunting, migrating, and swarming.]

HS-LS4-6. Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.* [Clarification Statement: Emphasis is on testing solutions for a proposed problem related to threatened or endangered species, or to genetic variation of organisms for multiple species.]
Standards

H.S. Interdependent Relationships in Ecosystems

- Human Sustainability (Env. Science)

Students who demonstrate understanding can:

HS-ESS3-1. Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. [Clarification Statement: Examples of key natural resources include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting and soil erosion), and severe weather (such as hurricanes, floods, and droughts). Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.]

HS-ESS3-2. Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.* [Clarification Statement: Emphasis is on the conservation, recycling, and reuse of resources (such as minerals and metals) where possible, and on minimizing impacts where it is not. Examples include developing best practices for agricultural soil use, mining (for coal, tar sands, and oil shales), and pumping (for petroleum and natural gas). Science knowledge indicates what can happen in natural systems—not what should happen.]

HS-ESS3-3. Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity. [Clarification Statement: Examples of factors that affect the management of natural resources include costs of resource extraction and waste management, per-capita consumption, and the development of new technologies. Examples of factors that affect human sustainability include agricultural efficiency, levels of conservation, and urban planning.] [Assessment Boundary: Assessment for computational simulations is limited to using provided multi-parameter programs or constructing simplified spreadsheet calculations.]
Standards

H.S. Interdependent Relationships in Ecosystems
- Human Sustainability (Env. Science)

HS-ESS3-4. Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.* [Clarification Statement: Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development, agriculture and livestock, or surface mining). Examples for limiting future impacts could range from local efforts (such as reducing, reusing, and recycling resources) to large-scale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean).]

HS-ESS3-6. Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. [Clarification Statement: Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.] [Assessment Boundary: Assessment does not include running computational representations but is limited to using the published results of scientific computational models.]
Standards

H.S. Interdependent Relationships in Ecosystems
- Engineering Design

Students who demonstrate understanding can:

HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.

HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
Standards

H.S. Interdependent Relationships in Ecosystems

Common Core State Standards Connections:

- Common Core ELA and Math

ELA/Literacy

RST.9-10.8 Assess the extent to which the reasoning and evidence in a text support the author's claim or a recommendation for solving a scientific or technical problem. (HS-LS2-6), (HS-LS2-7), (HS-LS2-8)

RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-LS2-1), (HS-LS2-2), (HS-LS2-6), (HS-LS2-8)

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-LS2-6), (HS-LS2-7), (HS-LS2-8)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-LS2-6), (HS-LS2-7), (HS-LS2-8)

WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. (HS-LS2-1), (HS-LS2-2)

WHST.9-12.5 Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. (HS-LS2-7), (HS-LS4-6)

WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem: narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-LS2-7), (HS-LS4-6)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-LS2-1), (HS-LS2-2), (HS-LS2-6), (HS-LS2-7)

MP.4 Model with mathematics. (HS-LS2-1), (HS-LS2-2)

HSN.Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-LS2-1), (HS-LS2-2), (HS-LS2-4), (HS-LS2-7)

HSN.Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-LS2-1), (HS-LS2-2), (HS-LS2-7)

HSN.Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-LS2-1), (HS-LS2-2), (HS-LS2-7)

HSS-ID.A.1 Represent data with plots on the real number line. (HS-LS2-6)

HSS-ID.C.1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population. (HS-LS2-6)

HSS-ID.C.6 Evaluate reports based on data. (HS-LS2-6)
Standards H.S. Matter and Energy in Organisms and Ecosystems

Students who demonstrate understanding can:

HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. [Clarification Statement: Emphasis is on illustrating inputs and outputs of matter and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models.] [Assessment Boundary: Assessment does not include specific biochemical steps.]

HS-LS1-6. Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules. [Clarification Statement: Emphasis is on using evidence from models and simulations to support explanations.] [Assessment Boundary: Assessment does not include the details of the specific chemical reactions or identification of macromolecules.]

HS-LS1-7. Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed, resulting in a net transfer of energy. [Clarification Statement: Emphasis is on the conceptual understanding of the inputs and outputs of the process of cellular respiration.] [Assessment Boundary: Assessment should not include identification of the steps or specific processes involved in cellular respiration.]

HS-LS2-3. Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions. [Clarification Statement: Emphasis is on conceptual understanding of the role of aerobic and anaerobic respiration in different environments.] [Assessment Boundary: Assessment does not include the specific chemical processes of either aerobic or anaerobic respiration.]

HS-LS2-4. Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. [Clarification Statement: Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen and nitrogen being conserved as they move through an ecosystem.] [Assessment Boundary: Assessment is limited to proportional reasoning to describe the cycling of matter and flow of energy.]

HS-LS2-5. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. [Clarification Statement: Examples of models could include simulations and mathematical models.] [Assessment Boundary: Assessment does not include the specific chemical steps of photosynthesis and respiration.]
Standards

H.S. Matter and Energy in Organisms and Ecosystems

- Energy (Physical Science)

Students who demonstrate understanding can:

HS-PS3-1 Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. [Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions used in the model.] [Assessment Boundary: Assessment is limited to basic algebraic expressions or computations, to systems of two or three components, and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.]

HS-PS3-2 Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motion of particles (objects) and energy associated with the relative positions of particles (objects). [Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the energy stored due to position of an object above the earth, and the energy stored between two electrically-charged plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations.]

HS-PS3-3 Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* [Clarification Statement: Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency.] [Assessment Boundary: Assessment for quantitative evaluations is limited to total output for a given input. Assessment is limited to devices constructed with materials provided to students.]

HS-PS3-4 Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). [Clarification Statement: Emphasis is on analyzing data from student investigations and using mathematical thinking to describe the energy changes both quantitatively and conceptually. Examples of investigations could include mixing liquids at different initial temperatures or adding objects at different temperatures to water.] [Assessment Boundary: Assessment is limited to investigations based on materials and tools provided to students.]

HS-PS3-5 Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction. [Clarification Statement: Examples of models could include drawings, diagrams, and texts, such as drawings of what happens when two charges of opposite polarity are near each other.] [Assessment Boundary: Assessment is limited to systems containing two objects]
Standards

H.S. Matter and Energy in Organisms and Ecosystems
- Common Core ELA and Math

Common Core State Standards Connections:

ELA/Literacy -
RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-LS1-6),(HS-LS2-3)
WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. (HS-LS1-6),(HS-LS2-3)
WHST.9-12.5 Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. (HS-LS1-6),(HS-LS2-3)
WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-LS1-6)
SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-LS1-5),(HS-LS1-7)

Mathematics -
MP.2 Reason abstractly and quantitatively. (HS-LS2-4)
MP.4 Model with mathematics. (HS-LS2-4)
HSN.Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-LS2-4)
HSN.Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-LS2-4)
HSN.Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-LS2-4)
Standards

H.S. Matter and Energy in Organisms and Ecosystems
- Social Studies
Future Direction and Sustainability

Build on each year!
Tips

Be Flexible
Be Patient
Network!
Assemble a Team
Have Fun!
Questions?

Thanks for Attending!

- Missed Connections: Reuniting alternative students with their environment through a cross-curricular day in the field

SCHECHs Code:

INVESTIGATION

Samantha Lichtenwald
lichtenwalds@bachs.us