EQUITABLE ACCESS:
MAKING MANDATED ENGLISH LANGUAGE ARTS ACCESSIBLE TO ELS
Drs. David and Yvonne Freeman
Professors Emeriti
The University of Texas Rio Grande Valley

CHALLENGES TEACHERS FACE IN TEACHING LANGUAGE ARTS
Meet the rigorous standards using a mandated language arts curriculum designed for native English speakers
Provide equitable access for English learners as they read, write about, and discuss their language arts curriculum
Ensure that all students become successful readers and writers

Why mandated reading materials?
School districts are pressured to have exemplary schools
They look for materials and programs that guarantee success.
Publishers produce language arts materials that claim to meet state standards and include everything that teachers need to ensure that all their students will succeed when evaluated.

Basal Readers
Most programs used in schools are referred to as basal readers or core reading programs
They are meant to provide a sequenced approach to reading instruction through textbooks and supplemental materials that include readings, often excerpts from children’s literature, and skills instruction.

Pros of Using Basal Programs
The structure of the program including units, supplemental materials, and lesson plans can support novice teachers
Basals provide lesson plans so teachers need less planning time
Basals include assessments for monitoring progress
Basals include worksheets and many activities teachers can draw upon
Basals promise to provide administrators and reading directors evidence that important reading skills are being taught in a systematic way

Cons of Using Basal Programs
Basal programs respond to education trends and are market driven but rarely initiate new ideas and rarely reflect reading research
Despite publisher claims, basal programs are more alike than they are different
Materials in the programs include repetitive questions and activities that bore students
Basal programs are developed for groups of students, not individual students who have distinct needs
Basal programs do not reflect a variety of teaching methods for different types of students
Basal programs fail to draw on background knowledge of diverse students
Basal materials do not take into account students’ varied academic strengths and abilities or English proficiency.
Big Question Units of Inquiry
Basal publishers choose readings that are connected to a topic or theme. Teachers can help emergent bilinguals understand the readings and acquire needed skills and vocabulary by showing students relationships among the readings. An overarching or big question connects readings and makes concepts clear when curriculum is organized around units of inquiry.

Why Organize Around Big Question Units of Inquiry?
Through units of inquiry, teachers can connect curriculum to students’ lives and backgrounds and draw on their language strengths. Students know what the topic is even when instruction is in the second language. Because the same topics are studied across content areas and languages, students build academic concepts and vocabulary more easily. Since the curriculum makes sense, second language students are more fully engaged and experience more success. Teachers can differentiate instruction to accommodate differences in language proficiency.

Seeds and Plants
Big Questions
How do plants grow? What do plants need to grow?
How do seeds turn into plants?
What are the parts of plants? What parts of plants do we eat?
How does what we grow help us grow?

Preview Activities
Identify seeds
Match pictures of plants and seeds
Sort and label seeds
Graph
Classify seeds

Unit Example: Plants/Seeds – Providing Equitable Access
Matching Picture Walk
Five piles, each with the same kind of seeds, on the table. Number the piles 1-5. Pictures around the room of plants that come from those seeds. In pairs students decide which seed will grow into which plant.
Sort and Label Seeds
Each group is given a plastic baggie with a variety of seeds. The children glue all the same type of seed in circles on a sheet of paper and then label the seeds in each circle.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Seed number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Classify the seeds
<table>
<thead>
<tr>
<th>Kind of seed</th>
<th>Color of seed</th>
<th>Shape of seed</th>
<th>Texture</th>
<th>How does it feel?</th>
<th>Does it have an odor? Does it smell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

View Activities

- Read books about seeds, plant growth, and nutrition
- Plant a pocket garden
- Observe and record plant growth
- Record observations
- Measure and graph stem and root growth
- Celery stalk experiment-root absorption
- Draw and record results

Compare and contrast seed books

(Spanish/English)

- Read about foods that come from plants
- Graph foods from corn
- Read about history of plants and foods from the Americas
- Non fiction and fiction plant growth books
- Translanguaging with plant books

<table>
<thead>
<tr>
<th>Date</th>
<th>Recording what you observe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Draw your seed. Show how it has changed</td>
</tr>
</tbody>
</table>

Observe and Measure Each Week

What kind of seed?

What environment? Sun? Dark? Cold?

STEM GROWTH

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ROOT GROWTH

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Celery Stalk Experiment-Root Absorption

<table>
<thead>
<tr>
<th>Draw your plant</th>
<th>What did you observe?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1 Draw and color</td>
<td>What did you observe?</td>
</tr>
<tr>
<td>Day 2 Draw and color</td>
<td>What did you observe?</td>
</tr>
<tr>
<td>Day 3 Draw and color</td>
<td>What did you observe?</td>
</tr>
</tbody>
</table>

Venn Diagram – Compare and contrast two books about plant growth
What foods come from plants?
What do you eat that comes from corn?
Read about
History of plants we eat
Foods from the Americas
Label and sort parts of a plant

Review Activities
Student created plant books
Write about plants from prompt
 - Chose two plants from different environments and write about how they are similar and how they are different.
 - What plants do you eat? What parts of plants do you eat?
 - What makes a nutritious meal?

Contact information
david.freeman@utrgv.edu
yvonne.freeman@utrgv.edu
http://davidandyvonnefreeman.com

Bibliography

Professional References