Student Exploration: Density Laboratory

Vocabulary: buoyancy, density, graduated cylinder, mass, matter, scale, volume

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

1. Of the objects below, circle the ones you think would float in water.

2. Why do some objects float, while others sink?

Gizmo Warm-up
The Density Laboratory Gizmo™ allows you to measure a variety of objects, then drop them in water (or other liquid) to see if they sink or float.

1. An object’s mass is the amount of matter it contains. The mass of an object can be measured with a calibrated scale like the one shown in the Gizmo. Drag the first object onto the Scale. (This is object 1.)

 What is the mass of object 1?

2. An object’s volume is the amount of space it takes up. The volume of an irregular object can be measured by how much water it displaces in a graduated cylinder. Place object 1 into the Graduated cylinder.

 What is the volume of object 1?

 Note: While milliliters (mL) are used to measure liquid volumes, the equivalent unit cubic centimeters (cm³) are used for solids. Therefore, write the volume of object 1 in cm³.

3. Drag object 1 into the Beaker of liquid. Does it sink or float?
Activity A: Float or sink?

Get the Gizmo ready:
- Drag object 1 back to the shelf.
- Check that Liquid density is set to 1.0 g/mL.

Question: How can you predict whether an object will float or sink?

1. Observe: Experiment with the different objects in the Gizmo. Try to determine what the floating objects have in common and what the sinking objects have in common.

2. Form hypothesis: Compare the floating objects, then do the same for the sinking objects.
 A. What do the floating objects have in common? __
 __
 B. What do the sinking objects have in common? __
 __

3. Collect data: Measure the mass and volume of objects 1 through 12, and record whether they float or sink in the table below. Leave the last column blank for now.

<table>
<thead>
<tr>
<th>Object</th>
<th>Mass (g)</th>
<th>Volume (cm³)</th>
<th>Float or sink?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Activity A continued on next page)
Activity A (continued from previous page)

4. **Analyze**: Look carefully for patterns in your data.

 A. Does mass alone determine whether an object will float or sink? ____________

 Explain: __

 B. Does volume alone determine whether an object will float or sink? ____________

 Explain: __

 C. Compare the mass and volume of each object. What is true of the mass and volume of all the floating objects? ________________________________

 D. What is true of the mass and volume of all the sinking objects? ________________
 __

5. **Calculate**: The **density** of an object is its mass per unit of volume. Dense objects feel very heavy for their size, while objects with low density feel very light for their size.

 To calculate an object’s density, divide its mass by its volume. If mass is measured in grams and volume in cubic centimeters, the unit of density is grams per cubic centimeter (g/cm³).

 Calculate the density of each object, and record the answers in the last column of your data table. Label this column “Density (g/cm³).”

6. **Analyze**: Compare the density of each object to the density of the liquid, 1.0 g/mL. This is the density of water.

 A. What do you notice about the density of the floating objects? ______________
 __

 B. What do you notice about the density of the sinking objects? ______________
 __

7. **Draw conclusions**: If you know the mass and volume of an object, how can you predict whether it will float or sink in water?

 __

 __

 __
Activity B: Liquid density

Get the Gizmo ready:
- Drag all the objects back onto the shelf.
- Check that the **Liquid density** is still 1.0 g/mL.

Question: How does liquid density affect whether objects float or sink?

1. **Observe:** Place object 1 into the **Beaker of liquid.** Slowly move the **Liquid density** slider back and forth. What do you notice? __
 __

2. **Form a hypothesis:** **Buoyancy** is the tendency to float. How do you think the liquid density affects the buoyancy of objects placed in the liquid? __
 __

3. **Predict:** In the table below, write the density of each object. Then predict whether the object will float or sink in each of the fluids. Write “Float” or “Sink” in each empty box of the table.

<table>
<thead>
<tr>
<th>Object</th>
<th>Object density</th>
<th>Liquid density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 g/mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0 g/mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0 g/mL</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. **Test:** Test your predictions using the Gizmo. Place a checkmark (✓) next to each correct prediction, and an “X” next to each incorrect prediction.

5. **Draw conclusions:** What is the relationship between the object density, the liquid density, and the tendency of the object to float? ________________________________
 __
 __
 __
Extension:

King Hieron’s crown

Get the Gizmo ready:
- Drag all the objects back onto the shelf.
- Set the **Liquid density** to 1.0 g/mL.

Introduction: In the third century B.C., King Hieron of Syracuse asked the famous mathematician Archimedes to determine if his crown was made of pure gold. This was a puzzling problem for Archimedes—he knew how to measure the weight of the crown, but how could he measure the volume?

Archimedes solved the problem when he got into his bath and noticed the water spilling over the sides of the tub. He realized that the volume of the displaced water must be equal to the volume of the object placed into the water. Archimedes was so excited by his discovery that he jumped out of the bath and ran through the streets shouting “Eureka!”

Question: How can you tell if a crown is made of solid gold?

1. **Think about it:** Gold is one of the densest substances known, with a density of 19.3 g/cm3. If the gold in the crown was mixed with a less-valuable metal like bronze or copper, how would that affect its density?

 __
 __

2. **Observe:** Drag each of the crowns into the liquid. Based on what you see, which crown do you think is densest? Explain why you think so.

 __
 __

3. **Measure:** Find the mass, volume, and density of each of the three crowns.

<table>
<thead>
<tr>
<th>Crown</th>
<th>Mass (g)</th>
<th>Volume (cm3)</th>
<th>Density (g/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. **Draw conclusions:** Which of the three crowns was made of gold? __________________

 Explain: __
 __