Practicing Linux Crash/Panic Issue on Production and Cloud Server

Gavin Guo
Technical Lead - Sustaining Engineering
gavin.guo@canonical.com

2019 Shanghai Open Source Summit
China
Enterprise Case Study

Migrating KSM page causes the VM lock up as the KSM page merging list is too large

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1680513
Case Description

After **numad** is enabled and there are several VMs running on the same host machine, the **softlockup** messages can be observed inside the VMs' `dmesg`.

CPU: 3 PID: 22468 Comm: kworker/u32:2 Not tainted 4.4.0-47-generic #68-Ubuntu
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Workqueue: writeback wb_workfn (flush-252:0)

```
[<ffffffff81104388>] smp_call_function_many+0x1f8/0x260
[<ffffffff810727d5>] native_flush_tlb_others+0x65/0x150
[<ffffffff81072b35>] flush_tlb_page+0x55/0x90
```
This one seems a known issue. The bug is proactively handled by Linus when Dave Jones\[3\] issued the bug which happened on the bare metal machine. Tinoco[2] also found the bug in the nested KVM environment which happened when the IPI is sent out in the VCPU and it seems the problem coming from the LAPIC simulation of VMX. Chris Arges also involved in the debugging process and the debugging patch was given out by the Ingo Molnar, then Chris added some hacks to print out the debugging information. Unfortunately, after a long investigation, the root cause is still unknown.

[3]. frequent lockups in 3.18rc4 https://lkml.org/lkml/2014/11/14/656
I've prepared a hotfix kernel which would resend the IPI and print out the information when the softlockup happens. Unfortunately, the hotfix kernel doesn't print out the error message. That means my original thoughts are incorrect!

The hotfix kernel source:

http://kernel.ubuntu.com/git/gavinguo/ubuntu-xenial.git/log/?h=sf000103690-csd-lock-debug
As I cannot find the clue inside the VMs, then try to investigate the host side.
crash> bt 615

PID: 615 TASK: ffff881fa174a940 CPU: 15 COMMAND: "ksmd"

#0 [ffff881fa1087cc0] __schedule at ffffffff818207ee

#1 [ffff881fa1087d10] schedule at ffffffff81820ee5

#2 [ffff881fa1087d28] rwsem_down_read_failed at ffffffff81823d60

#3 [ffff881fa1087d98] call_rwsem_down_read_failed at ffffffff8183f8324

#4 [ffff881fa1087df8] ksm_scan_thread at ffffffff811e613d

#5 [ffff881fa1087ec8] kthread at ffffffff810a0528

#6 [ffff881fa1087f50] ret_from_fork at ffffffff8182538f
Host Machine - Hung task Backtrace

khugepaged

```
crash> bt 616

PID: 616 TASK: ffff881fa1749b80 CPU: 11 COMMAND: "khugepaged"
#0 [ffff881fa108bc60] __schedule at fffffff818207ee
#1 [ffff881fa108bcb0] schedule at fffffff81820ee5
#2 [ffff881fa108bcc8] rwsem_down_write_failed at fffffff81823b32
#3 [ffff881fa108bd50] call_rwsem_down_write_failed at fffffff813f8353
#4 [ffff881fa108bda8] khugepaged at fffffff811f58ef
#5 [ffff881fa108bec8] kthread at fffffff810a0528
#6 [ffff881fa108bf50] ret_from_fork at fffffff8182538f
```
Host Machine - Hung task Backtrace

qemu-system-x86

```
crash> bt 12555

PID: 12555 TASK: ffff85fa1af6040 CPU: 55 COMMAND: "qemu-system-x86"
#0 [ffff885f9a043a50] __schedule at ffffffff818207ee
#1 [ffff885f9a043aa0] schedule at ffffffff81820ee5
#2 [ffff885f9a043ab8] rwsem_down_read_failed at ffffffff81823d60
#3 [ffff885f9a043b28] call_rwsem_down_read_failed at ffffffff813f8324
#4 [ffff885f9a043b88] kvm_host_page_size at ffffffff02c0fbae [kvm]
#5 [ffff885f9a043ba8] mapping_level at ffffffff02ead1f [kvm]
#6 [ffff885f9a043bd8] tdp_page_fault at ffffffff02f0b8a [kvm]
#7 [ffff885f9a043c50] kvm_mmu_page_fault at ffffffff02ea794 [kvm]
#8 [ffff885f9a043c80] handle_ept_violation at ffffffff01acda3 [kvm_intel]
#9 [ffff885f9a043cb8] vmx_handle_exit at ffffffff01afdb [kvm_intel]
#10 [ffff885f9a043d48] vcpu_enter_guest at ffffffff02e026d [kvm]
#11 [ffff885f9a043dc0] kvm_arch_vcpu_ioctl_run at ffffffff02e698f [kvm]
#12 [ffff885f9a043e08] kvm_vcpu_ioctl at ffffffff02e09d [kvm]
#13 [ffff885f9a043ea0] do_vfs_ioctl at ffffffff81220be
#14 [ffff885f9a043f10] sys_ioctl at ffffffff81220e59```

Host Machine - Hung task Backtrace
We can see that the previous three tasks are waiting on the `mmap_sem`. The most interesting part is the backtrace of `numad`:

```
crash> bt 2950
The disassembly analysis of numad call stack
#1 [ffff885f8fb4fb78] smp_call_function_many
#2 [ffff885f8fb4fbc0] native_flush_tlb_others
#3 [ffff885f8fb4fc08] flush_tlb_page
#4 [ffff885f8fb4fc30] ptep_clear_flush
#5 [ffff885f8fb4fc60] try_to_unmap_one
#6 [ffff885f8fb4fcd0] rmap_walk_ksm
#7 [ffff885f8fb4fd28] rmap_walk
#8 [ffff885f8fb4fd80] try_to_unmap
#9 [ffff885f8fb4fde80] migrate_pages
#10 [ffff885f8fb4fe80] do_migrate_pages
```
I've tried to **disassemble** the code and finally find the `stable_node->hlist` is as long as 2306920 entries (Around 9.2GB memory merged into one page).

`rmap_item list(stable_node->hlist):`

```c
stable_node: 0xffff881f836ba000 stable_node->hlist->first = 0xffff883f3e5746b0
```

```c
struct hlist_head {
 [0] struct hlist_node *first;
}
```

```c
struct hlist_node {
 [0] struct hlist_node *next;
 [8] struct hlist_node **pprev;
}
```

```bash
crash> list hlist_node.next 0xffff883f3e5746b0 > rmap_item.lst
```

```bash
$ wc -l rmap_item.lst
2306920 rmap_item.lst
```
The merge list is as long as 2306920 entries.
According to the memory access latency, it would be better to migrate Process D to node 1 and Process E to node 0. The remote access page by Process A can be migrated to node 0. However, it would also need to consider the CPU loading before migrating the processes.
When migrating the ksm pages, `numad` needs to call the IPI to flush the related TLB entries in CPUs which ever used the PTE.
Re: [PATCH 1/1] ksm: introduce ksm_max_page_sharing per page deduplication limit
https://www.spinics.net/lists/linux-mm/msg125880.html

80b18dfa53bb ksm: optimize refile of stable_node_dup at the head of the chain
8dc5ffcd5a74 ksm: swap the two output parameters of chain/chain_prune
0ba1d0f7c41c ksm: cleanup stable_node chain collapse case
b4fecc67cc56 ksm: fix use after free with merge_across_nodes = 0
2c653d0ee2ae ksm: introduce ksm_max_page_sharing per page deduplication limit