Kubernetes IoT Edge Working Group:

Introduction and survey of Kubernetes related solutions for IoT and Edge

Steven Wong, VMware
Luwei He, Huawei
Abstract

Hidden slide during presentation – included for those finding deck online later

Kubernetes describes itself as "a portable, extensible open-source platform for managing containerized workloads and services".

There are edge and IoT use cases that challenge some aspects of Kubernetes.

• Run Kubernetes full clusters at edge locations (e.g. retail store and remote branch office) under tight resource constraints
• Run containerized workloads at edge with a remote Kubernetes control plane at a cloud or central location
• Run devices using non containerized software at edge

This session will survey of some existing solutions in the edge and IoT space, covering how they address issues like security, messaging, resource constraints, data communications, application lifecycle management, etc. while working within Kubernetes limitations.

We will wrap up with a report on ongoing activity within the IoT Edge working group and details on how you can get involved.
Presenters

Luwei He

Standard Engineer, Huawei

Luwei is currently working on some open source work about edge computing, and participating in and contributing to the related community, e.g., Kubernetes, KubeEdge, Akraino, OpenStack and more.

GitHub: @hellowaywewe

Steven Wong

Los Angeles

Open Source Community Relations Engineer, VMware

Co-lead of the Kubernetes IoT + Edge Working Group. Also active in other Kubernetes SIGs and WGs since 2015. Former engineer and architect of Wonderware HMI/SCADA industrial IoT products.

GitHub: @cantbewong
Survey of some existing solutions in the edge and IoT space. How they address:

- Security
- Messaging
- Resource constraints
- Data communications
- Application lifecycle management

Ongoing activity within the IoT Edge working group

How you can get involved.
Standard Kubernetes Architecture

Composed of a control plane + node(s) hosting workloads

Originally designed for hosting workloads on large public clouds

Can have issues in IoT and edge applications:

• Do you want 1,000’s of control planes?

• Is this suitable for:
 • Operation at locations without IT staff
 • Operation at sites with limited resources?
Option 1: whole clusters at edge

Maybe a lot of them

Kubernetes might be “forked” to remove unneeded features and alter components to reduce resource demands
Option 2: central Kubernetes control plane managing edge

Edge runs containerized workloads using kubelets or “forked” lightweight kubelets
Virtual kubelet(s) are in cloud

Virtual kubelets implement “supervisory control” over edge workloads that might be containerized - but could also be non-containerized, non-Linux OS, or no OS at all

Might be possible to do this using CRDs and controllers instead of virtual kubelet
Survey of IoT Edge variants using Kubernetes

Open source
Differentiating factors
A few common Kubernetes enhancements for edge, some solutions may have more

- Adjunct to “pure” upstream Kubernetes or forked
- Added networking support
- Added security features
- Adds management of devices and hosting hardware
- Features to deal with reduced resources at edge
Whole clusters, with control plane, at edge

Common use case – remote office, retail

use case examples:

Target
[link to article]

Chick-fil-A
[link to article]
Rancher K3s

source repo: github.com/rancher/k3s

Edge optimized micro distribution of Kubernetes

key edge related features

- supports both x86 + ARM CPU
- supports nodes with memory <4GB
- designed with simplified operation for embedded or offline (air-gapped)

<table>
<thead>
<tr>
<th>Removes</th>
<th>Adds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legacy and non-default features</td>
<td>Simplified installation</td>
</tr>
<tr>
<td>Alpha features</td>
<td>TLS management</td>
</tr>
<tr>
<td>In-tree cloud providers</td>
<td>Automatic Manifest and Helm Chart</td>
</tr>
<tr>
<td>In-tree storage drivers</td>
<td></td>
</tr>
</tbody>
</table>

Swaps & Opinions (some optional)

etcd -> SQLite2
Docker -> containerd
CNI = flannel, DNS = CoreDNS, Ingres = Traefik
Rancher k3s

landing page:

k3s.io/

blogs:

rancher.com/blog/2019/announcing-k3os-kubernetes-operating-system
fedoramagazine.org/kubernetes-on-fedora-iot-with-k3s/

demo video:

youtu.be/WYPd7i15X0g
Central Kubernetes control plane managing edge

Device twins are in cloud edge might not be Kubernetes

use case example: Bosch

blog.bosch-si.com/bosch-iot-suite/adopting-kubernetes-to-build-iot-solutions/
Azure IoT Edge

Kubernetes control plane in cloud - Device twins - split:
one in cloud, one at edge

picture source: microsoft.com
Azure IoT Edge

source repo: github.com/azure/iot-edge-virtual-kubelet-provider

Uses a Kubernetes control plane with a cloud hosted Virtual Kubelet.

The IoT Edge provider handles kubelet API calls forwarded by the virtual kubelet. It talks to the Azure IoT hub using the Azure IoT SDKs to submit an transformed container specification. Tags, annotations and configmaps can encode IoT edge specific information.

If the edge device is offline when applying a new configuration, it gets pushed as soon as the device gains connectivity.

Edge Hub acts as a communication broker facilitating local device communication. It supports standard protocols of IoT Hub including AMQP, MQTT.

picture source: microsoft.com
Azure IoT Edge
resources

landing page:

azure.microsoft.com/en-us/services/iot-edge/

blogs:

aka.ms/iotedgek8s-blog

demo video:

youtu.be/01kHKNN3z-0?t=3824
Edge workloads deployed to on premise Kubernetes clusters. Uses Custom Resource Definitions (CRDs), with a Controller (IoT Edge Agent) that reconciles cloud managed desired state with the local device state

Azure IoT Edge (preview) - Kubernetes clusters at edge

source repo: github.com/Azure-Samples/iotedge-gateway-on-kubernetes

Changes:

- No virtual kubelet at edge, no hard requirement for Docker CRI - Kubernetes instead

Picture source: microsoft.com
Azure IoT Edge (preview) - Kubernetes clusters at edge

resources

landing page:

docs.microsoft.com/en-us/azure/iot-edge/how-to-install-iot-edge-kubernetes

blog:

itnext.io/azure-iot-edge-workloads-on-kubernetes-1065b801cf4f

demo video:

youtu.be/tHCTuaY3qZA

deep dive video:

youtu.be/29j9RDCvIeY
KubeEdge changes:

• On the cloud, use CRDs to extend the controller (EdgeController, DeviceController)

• At edge, Custom edge node components and runtime, binary package ~46M

KubeEdge supports:

• K8s APIs and Primitive types
• control plane is on the cloud and run apps at edge
• duplex/multiplex cloud/edge network connection
• edge side autonomy
• ~10M memory for nodes
• data can be secured and processed locally
• device twin, mqtt/http device & edge connection
• versatile device protocols: Bluetooth, Modbus, OPU-UA, etc.
A native K8s based edge computing platform, enable customers to run lightweight cluster at edge

- full control of K8s cluster at edge
- light weight control plane and agent
- control plane supports HA
- EdgeSite cluster master node no less than 2 CPU and 1G
- edge worker node autonomy
- the KubeEdge pluggable module framework
- conformed K8s APIs
- **CNCF sandbox** project
KubeEdge

resources

landing page: kubeedge.io

proposal link:
github.com/kubeedge/kubeedge/blob/master/docs/proposals/EdgeSite.md

blogs:
thenewstack.io/kubeedge-extends-the-power-of-kubernetes-to-the-edge/
kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/

demo repo:
github.com/edisonxiang/kubeedge-wechat-demo

intro video: youtu.be/pdq1ANkp0Ms deep dive video youtu.be/LuiYF2vi2nE
Open Source IoT + Edge Tools

With support for use with Kubernetes

our charter:

“A Working Group dedicated to discussing, designing and documenting using Kubernetes for developing and deploying IoT and Edge specific applications”
Managed, self-service messaging on Kubernetes. Built-in authentication and authorization of clients and identity management

Key features:
- Runs on Kubernetes: deploy on-premise or in the cloud
- Different messaging patterns like request-response, pub-sub and events
- Decouple operation of infrastructure from configuration and use by applications

landing page:

enmasse.io/

video:

youtu.be/ZIp9EPQ25eM
Eclipse Hono

source repo: github.com/eclipse/hono

Provides remote service interfaces for connecting large numbers of IoT devices to a back end and interacting with them in a uniform way regardless of the device communication protocol.

Supports:
- data ingestion (telemetry data)
- command & control type message exchange patterns
- provisioning & security aspects, managing device identity and access control rules
- Deployment on Kubernetes (www.eclipse.org/hono/deployment/kubernetes/)

Hono is not a messaging system itself, it operates at a layer above messaging infrastructure to work such as MQTT.

landing page:

www.eclipse.org/hono/

video:

youtu.be/6m_boZU97Ks
“Digital twins” is a concept of maintaining a cloud based representation of a living device that may be intermittently connected.

Supports:
- An API to deal with devices
- State management, synchronization of state changes handles eventual consistency tracking desired state, last reported (known) state, and current (live) state of devices.
- Digital twin search functionality based on metadata and state data
- Kubernetes deployable (described here: github.com/eclipse/ditto/tree/master/deployment/Kubernetes)

Eclipse Ditto
source repo: github.com/eclipse/ditto

landing page:
www.eclipse.org/ditto/

video:
youtu.be/NpC4ROGqwKc
Framework for rolling out software updates to constrained edge devices as well as controllers and gateways connected to IP based networking infrastructure

Key features:
- Scalable to millions of devices, and terabytes of software, on a global scale
- Supports complex rollout strategies (grouping, cascading, error detection)
- Supports standard and proprietary protocols
- Can run on Kubernetes, deployed via Helm chart

Source repo: github.com/eclipse/hawkbit

Landing page:
www.eclipse.org/hawkbit

Video:
youtu.be/8vcLXs9lC-4
Eclipse ioFog

source repo: github.com/eclipse-iofog

Install to any device, even with minimal compute, remotely manage and run microservices on it.

“New release that makes any Kubernetes distribution edge-aware, allowing customers to create a true cloud-to-edge continuum and deploy applications and microservices from the cloud to any edge device.”

landing page: iofog.org/

More open source tools that run on or with Kubernetes
this session is not long enough to cover everything

EdgeX Foundry: deploy containerized workloads to edge, Docker is reference runtime but orchestrator agnostic

Akraino: designed to improve the state of edge cloud infrastructure for enterprise edge, OTT edge, and carrier edge networks

 wiki: https://wiki.akraino.org/display/AK/Kubernetes-Native+Infrastructure+%28KNI%29+Blueprint+Family
Thank You
This deck: bit.ly/2FwovjS

How to get involved with the IoT and Edge Working Group, learn more...

Regular Work Group Meeting:
USA WG Meeting Wednesday 9am PT, every 4 weeks, next on July 17
APAC WG meeting Wednesday 5 UTC every 4 weeks, next on July 3
• [Meeting notes and agenda](#)

Link to join the group
• groups.google.com/forum/#!forum/kubernetes-wg-iot-edge

Link to join Slack
• https://kubernetes.slack.com/messages/wg-iot-edge

White Paper