Identifier Technology Health Indicators (ITHI)
Metric Collection M3, M4, M6

Christian Huitema (Private Octopus Inc.), Alain Durand (ICANN)

ICANN 60, Abu Dhabi, 28 October - 3 November 2017
In this talk

• Definition of DNS-related ITHI metrics:
 • M3: overhead in root traffic,
 • M4: usage of TLDs and leakage of undelegated strings,
 • M6: usage of IANA-registered DNS parameters.

• Proposed methodology and tools
 • Ask for cooperation from operators of recursive resolvers
M3: overhead in root traffic
ITHI M3: Overhead in Root Traffic

- Overhead at root needs tracking
 - Many “NX Domain” responses
 - Many queries not needed if resolver caches were TTL compliant

- Proposing three metrics:
 - M3.1: NX Domains/Total Queries
 - M3.2: % not TTL compliant queries
 - M3.3: NX Domain per classes of TLD

Example of results, from the analysis of some B-Root traces
ITHI M3.3: NX Domain per classes of TLD

- M3.3.1: RFC 6761 “Special Usage” names, e.g. “.LOCAL”
- M3.3.2: Frequently leaked names, e.g. “.HOME”
- M3.3.3: Suspected automatic generation, e.g. “.FTTPFPTPXGVWJO”
- M3.3.4: all others

Example of results, from the analysis of some B-Root traces
ITHI M3.3.1: Overhead per RFC 6761 Names

• RFC 6761
 • IETF defines “special use” domain names, including some special use TLD
 • Names should never be found in DNS queries, or sent to the root
 • Yet they leak...

• ITHI Metric M3.3.1
 • Track % of overhead for RFC 6761 TLD

<table>
<thead>
<tr>
<th>RFC 6761 TLD</th>
<th>%Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>.LOCAL</td>
<td>...%</td>
</tr>
<tr>
<td>.INVALID</td>
<td>...%</td>
</tr>
<tr>
<td>.LOCALHOST</td>
<td>...%</td>
</tr>
<tr>
<td>.TEST</td>
<td>...%</td>
</tr>
<tr>
<td>.ONION</td>
<td>...%</td>
</tr>
<tr>
<td>.EXAMPLE</td>
<td>...%</td>
</tr>
</tbody>
</table>
ITHI M3.3.2: Overhead by Frequent Names

• M3.3.2:
 • List of most frequently appearing non registered domains

• Methodology
 • Find the “most frequent” non registered domains in traces
 • Retains the names that cause more than 0.1% of leaks

<table>
<thead>
<tr>
<th>TLD</th>
<th>%overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>...%</td>
</tr>
</tbody>
</table>
ITHI M3.3.3: Overhead by Automatic Names

• Some overhead correspond to suspected automatically generated names

• M3.3.3:
 • Define suspected “patterns” (TBD)
 • Count names that match patterns that account for more than 0.1% of traffic

<table>
<thead>
<tr>
<th>Pattern</th>
<th>%overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>pattern_1</td>
<td>... %</td>
</tr>
<tr>
<td>pattern_2</td>
<td>... %</td>
</tr>
<tr>
<td>pattern_3</td>
<td>... %</td>
</tr>
<tr>
<td>pattern_4</td>
<td>... %</td>
</tr>
<tr>
<td>pattern_5</td>
<td>... %</td>
</tr>
<tr>
<td>pattern_6</td>
<td>... %</td>
</tr>
<tr>
<td>pattern_7</td>
<td>... %</td>
</tr>
<tr>
<td>pattern_8</td>
<td>... %</td>
</tr>
<tr>
<td>...</td>
<td>... %</td>
</tr>
</tbody>
</table>
ITHI M3.3.4: Other Overhead

• Capture a variety of overhead sources, not accounted for by M3.3.1, M3.3.2, M3.3.3

• Defined as difference
 • Total NX Domains = M3.3.1 + M3.3.2 + M3.3.3 + M3.3.4

• Note: M3.3.3 only computed on TLD not found in M3.3.1, M3.3.2
M4: Usage of TLDs and Leakage of Undelegated Strings
M4: Usage of TLDs and Leakage of Undelegated Strings

• M4.1: Usage volume of delegated TLD
 • For each delegated TLD, fraction of queries directed at <TLD>

• M4.2: Leakage of RFC 6761 Special Use Names
 • For each RFC 6761 name, fraction of queries directed at <name>

• M4.3: Leakage of frequent non delegated strings
 • Find most frequent non delegated top level strings in queries
 • Retain name if fraction > 0.1%, List < string>, fraction of query

• M4.4: Leakage of other strings
 • All queries at non registered strings not in M4.2, M4.3
M6: usage of IANA-registered DNS parameters in DNS queries
M6: usage of IANA-registered DNS parameters in DNS queries

- IETF
 - Protocol Definition

- IANA
 - Parameter registry

- Dev.
 - Registration
 - (or squatting)

- ?
 - Practical usage

- Example of registries
 - DNS RR Types
 - EDNS OPT Types
 - DNSSEC Algorithms

- Two questions
 - Are the registered values used in DNS queries?
 - Do we observe squatting?
Metric Definition, Fictitious Example, Registry with 16 possible entries

\[
\text{Usage} = \frac{\text{Nb used}}{\text{Nb registered}} = \frac{7}{10} = 70\%
\]

\[
\text{Squatting} = \frac{\text{Volume Non Reg.}}{\text{Volume Total}} = \frac{8}{68} = 11.8\%
\]
M6.X.N.1, 2 and 3

• Multiple registries
• Registry Index, form X.N
 • X: one of DNS, DANE, DNSSEC
 • N: index of specific registry in the group specified above
• Three metrics per registry
 • M6.X.N.1: Usage
 • M6.X.N.2: Squatting
 • M6.X.N.3.V: Volume, for each registered value “V”

• Example: RR Type
 • DNS Registry number 2
 • M6.DNS.2.1: usage metric for RR Types
 • M6.DNS.2.2: squatting metric for RR Types
 • M6.DNS.2.3.28: usage of value 28 (AAAA)
<table>
<thead>
<tr>
<th>Group</th>
<th>Parameters</th>
<th>Metric Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANE</td>
<td>TLSA Certificate Usages</td>
<td>M6.DANE.1</td>
</tr>
<tr>
<td></td>
<td>TLSA Selectors</td>
<td>M6.DANE.2</td>
</tr>
<tr>
<td></td>
<td>TLSA Matching Types</td>
<td>M6.DANE.3</td>
</tr>
<tr>
<td>DNS</td>
<td>DNS CLASSes</td>
<td>M6.DNS.1</td>
</tr>
<tr>
<td></td>
<td>Resource Record (RR) TYPES</td>
<td>M6.DNS.2</td>
</tr>
<tr>
<td></td>
<td>DNS OpCodes</td>
<td>M6.DNS.3</td>
</tr>
<tr>
<td></td>
<td>DNS RCODEs</td>
<td>M6.DNS.4</td>
</tr>
<tr>
<td></td>
<td>AFSDB RR Subtype</td>
<td>M6.DNS.5</td>
</tr>
<tr>
<td></td>
<td>DHCID RR Identifier Type Codes</td>
<td>M6.DNS.6</td>
</tr>
<tr>
<td></td>
<td>DNS Label Types</td>
<td>M6.DNS.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Parameters</th>
<th>Metric Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS SEC</td>
<td>DNS Security Algorithm Numbers</td>
<td>M6.DNSSEC.1</td>
</tr>
<tr>
<td></td>
<td>DNS KEY Record Diffie-Hellman Prime Lengths</td>
<td>M6.DNSSEC.2</td>
</tr>
<tr>
<td></td>
<td>DNS KEY Record Diffie-Hellman Well-Known Pairs</td>
<td>M6.DNSSEC.3</td>
</tr>
<tr>
<td>DNS</td>
<td>DNS EDNS0 Option Codes (OPT)</td>
<td>M6.DNS.8</td>
</tr>
<tr>
<td></td>
<td>DNS Header Flags</td>
<td>M6.DNS.9</td>
</tr>
<tr>
<td></td>
<td>EDNS Header Flags (16 bits)</td>
<td>M6.DNS.10</td>
</tr>
<tr>
<td></td>
<td>EDNS version Number (8 bits)</td>
<td>M6.DNS.11</td>
</tr>
<tr>
<td></td>
<td>Child Synchronization (CSYNC) Flags</td>
<td>M6.DNS.12</td>
</tr>
</tbody>
</table>
Capture and Computation
Proposed Methodology

• Process:
 • Use multiple collection points
 • At each collection point, collect about 1 million transactions
 • ICANN receives summary data once a day from collection points
 • ICANN aggregate summaries to compute the metrics.

• Open source collection tool provided by ICANN:
 • Removes PII information from the observed data.
 • Produces summary table at collection point.
 • Computes metrics after aggregation
At ICANN:

Network share, e.g. Dropbox:

Monitoring tool (e.g. DNSCAP) → Capture (PCAP) → ITHITOOLS extraction

Summary (CSV)

At specific location, 1M queries at random time of day:

The tool chain for ITHI metrics M3, M4 and M6

ITHITOOLS summary

Merged Summary (CSV) → Metrics (CSV)
Difference between M4 and M3.3

- M3.3 measures overhead at the root
- M4 measures usage and leakage at recursive resolver
- With “perfect” resolvers, M3.3 tends towards 0%, due to caching
 - E.g., NSEC3 aggressive
- M6 mostly observable at resolvers
 - Caching, QName minimization
Dealing With Privacy Issues

- DNS traffic is privacy sensitive
 - IP addresses of users
 - Domain names of servers
 - Patterns of user queries
- We do not need PII data for M3, M4 and M6
 - No need for source IP addresses, queried names
 - Just statistics, no GDPR issue
- Solution: produce aggregated summaries
 - Typical summary size: 8 to 16 KB
ITHI Tool Design

- ITHITOOLS: single tool, three functions:
 - Parse a capture file, produce a summary
 - Merge several summaries
 - Compute the metrics

- Open source:
 - https://github.com/private-octopus/ithitools
 - MIT license
 - C++, Can be built on Windows and Linux

- Can run in a “sand box”
 - No network access required,
 - Summaries can be copied to network share by script
Summary
DNS Recursive Resolvers
Operators, we need your help!

- ITHI metrics help the whole community
 - M3: health of the DNS root
 - M4: analysis of TLD usage and leakage of strings
 - M6: health of IANA parameter registries for DNS

- Capture methodology is safe
 - Minimal load, no privacy issues

- Please contact us if you are interested!