DNS Abuse: An Introduction

How It Works:

Dave Piscitello

ICANN 60
DD Month 2017
Agenda

- What is DNS Abuse? DNS Misuse?
- Examples of DNS Abuse or Misuse
- Abuse in an ICANN Context
- Basic DNS Abuse Investigations Strategies
What is DNS Abuse?

- No globally accepted definition exists, but definitional variants include:
 - Cyber crime
 - Hacking
 - **Malicious conduct**

- Threats to the DNS fall under three categories:
 - *data corruption, denial of service, and privacy.*

- DNS misuse is distinguished from DNS Abuse:
 - Misuse refers to intentionally deceptive, conniving, or unsolicited activities that actively make use of the the DNS and/or the procedures used to register or resolve domain names.
In simpler terms “DNS abuse” refers to anything that attacks or abuses the DNS infrastructure,

or

DNS misuse refers to exploiting the DNS protocol or the domain name registration processes for malicious purposes.
Why Is the DNS a Target for Attacks

- Everyone uses the DNS to resolve user friendly names to Internet Protocol addresses
- Disrupt the DNS and you disrupt emerchant transactions, government services, elearning, or social engagement
- Exploit the DNS and you can trick, defraud or deceive users
- Vectors for exploitation
 - Maliciously register domain names
 - Hijack name resolution or name registration services
 - Corrupt DNS data
All of the operational elements of the DNS are targets for attacks

- **Authoritative Name Servers** host zone data
 - The set of “DNS data” that the registrant publishes
- **Recursive Name Resolvers** ("resolvers")
 - Systems that find answers to queries for DNS data
 - **Caching** resolvers find and store answers locally for “TTL” period of time
- **Client** or “stub” resolvers
 - Software in applications, mobile apps or operating systems that query the DNS and process responses
What elements of the DNS are targeted and how?

<table>
<thead>
<tr>
<th>Target</th>
<th>Authoritative Name Server</th>
<th>Recursive Resolver</th>
<th>Stub Resolver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access bandwidth</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Access network elements</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NS or device:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OS software</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Name server software</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Cache</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Application software</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Administration</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Configuration</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
What is DNS Abuse? DNS Misuse?

Examples of DNS Abuse or Misuse

Abuse in an ICANN Context

Basic DNS Abuse Investigations Strategies
Attacks Against Name Servers or Recursors

- “Exploit to fail” Denial of Service (DOS) attack
- “Exploit to own” DOS attack
- Reflection attack
- Amplification attack
- Distributed Reflection and Amplification DOS attack
- (Host) Resource Depletion Attack
- Cache Poisoning or Exhaustion attacks
- DNS Man-in-the-Middle attack

Let’s look at some examples
“Exploit to fail” DOS attack

- Exploit a vulnerability in some element of a name server infrastructure to cause interruption of name resolution service.

- Example: Malicious DNS message injection
Distributed reflection and amplification attack (DDoS)

- Launch reflection and amplification attack from 1000s of origins
- Reflect through open recursor
- Deliver 1000s of large responses to target

Attackers

All sources spoof source IP of target: 10.0.0.1

Targeted host IP: 10.0.0.1

Open Recursor

DNS Query

DNS Query

DNS Query

DNS Response

DNS Response

DNS Response
(Host) Resource Depletion DOS attack

- Attacker sends flood of DNS messages over TCP from spoofed IP address of target.
- Name server allocates resources for TCP connections until resources are exhausted.
- Name resolution is degraded or interrupted.
Poisoning a Cache

- Attacker launches a spam campaign where spam message contains http://loseweightfastnow.com
- Attacker’s name server will respond to a DNS query for loseweightnow.com with malicious data about ebay.com
- Vulnerable resolvers add malicious data to local caches
- The malicious data will send victims to an eBay phishing site for the lifetime of the cached entry

What is the IPv4 address for loseweightfastnow.com

My Mac

My local resolver

I’ll cache this response… and update www.ebay.com

loseweightfastnow.com IPv4 address is 192.168.1.1
ALSO www.ebay.com is at 192.168.1.2

ecrime name server
Poisoning a host (DNSChanger)

Attacker distributes DNS configuration altering malware via

- Spam, drive-by download…

DNSChanger malware

- Alters DNS configuration of infected PC
- Causes all requests to go to a malicious name server run by attackers
- Attacker updates malware to redirect web traffic to a destination of his choosing
DNS protocol and registration system misuse

- Domain name registration hijacking, DNS hijacking
- DNS protocol as a Covert Exfiltration Channel
- DNS protocol as a Covert Malware Channel
- Fast Flux

Let’s look at some examples
Domain name registrations are sweet targets for attacks

How to register a gTLD domain:

1. Choose a string e.g., example
2. Visit a registrar to check string availability
3. Pay a fee to register the name
4. Submit registration information

Registrar and registries manage:
- “string” + TLD (managed in registry DB)
- Contacts, DNS (managed in Whois)
- DNS, status (managed in Whois DBs)
- Payment information

Process is automated, rapidly provisioned. Correspondence is largely email. Inexpensive registrations are plentiful... Good for consumers, good for attackers, too.
Why do attackers and criminals register domain names?

Register names, sometimes in volume to host
- Phishing (fraud) pages
- Ransomware payment web pages
- Malware distribution sites
- Scam sites (advance fee fraud, reshipping etc.)
- Counterfeit goods sites
- Illegal pharmaceutical or piracy sites

Domain names also play roles in criminal DNS Infrastructures
- Name server names for ecrime name resolution
- Names for command-control administration for botnet
Hijacking (theft) is another way that attackers acquire domain names

Why pay if you can crack?

- Attacker gains control of a domain registrar or registry customer account
 - Social engineering
 - Phishing attack
 - Data breach

- Attacker modifies/adds name server record for domain
 - NS record that is published in TLD zone, associates domain’s name server with IP address of attacker’s host

- Attacker publishes “attack” zone data
 - Resource records in zone data support phishing, fraud, or defacement sites, spam mail exchanges, VoIP servers...
Criminals exploit registrar email correspondence (Phishing)

How many domain registrants are victims of compromised email accounts?

How many use compromised account credentials from Yahoo! or Equifax breaches?
Using the DNS to evade, obfuscate, and make networks agile

Fast flux

- Attacker associates IP address with a web proxy or name server for short time to live (TTL)
- Attacker changes IP of host or name server at low TTL frequency to thwart investigators

Double (fast) flux

- Apply fast flux technique to both web proxy and name server
DNS as a Covert Exfiltration Channel

- DNS messages manipulated to forward sensitive data from infected PC *through firewall* to botnet command and control (C&C)

- Proof of concept: exfiltrate results of SQL injection attacks
DNS as a Covert Malware Channel

- Malware on infected PC performs TXT lookups to botnet C&C
- TXT responses contain instructions for bot
- Examples in wild:
 - Feederbot
 - Morto

Infected PC

‘bot’

botnet C&C encodes instructions in DNS
TXT responses

botnet
C&C

Firewall allows inbound responses via port 53/DNS
Agenda

- What is DNS Abuse? DNS Misuse?
- Examples of DNS Abuse or Misuse
- Abuse in an ICANN Context
- Basic DNS Abuse Investigations Strategies
DNS Abuse in the ICANN policy world

- ICANN discussions often touch on issues relating to “abuse”
 - Deliberations are often heated or controversial

- Topics with highest heat map at ICANN 60
 - Whois accuracy
 - GDPR
 - Public safety
 - Reporting abuse

https://www.flickr.com/photos/mypublicjournal/
Government Advisory Committee on DNS Abuse

Beijing GAC communique, April 2013

- **Mitigating abusive activity**—Registry operators will ensure that terms of use for registrants include prohibitions against the *distribution of malware, operation of botnets, phishing, piracy, trademark or copyright infringement, fraudulent or deceptive practices, counterfeiting or otherwise engaging in activity contrary to applicable law.*

Hyderabad GAC communique, November 2016

- The GAC would like to remind ICANN that the list of Security Threats in the New gTLD Safeguards is not meant to be exhaustive. In fact, the Security checks Safeguard applicable to all New gTLDs refers to “security threats such as phishing, pharming, malware, and botnets” (emphasis added), which does not exclude other relevant threats. Please describe what analysis and reporting is conducted regarding other relevant threats not listed above, including **spam**?
Public Safety Working Group

- Working group reports to and advises GAC on matters of abuse, public safety or public interest policy
- Law enforcement and invited cybersecurity SMEs
- Issues that the PSWG considers
 - GDPR
 - Whois accuracy
 - Carrier Grade Network Address Translation (CGN)
 - Fast Flux
 - DNS Abuse
Consideration of DNS abuse in contractual agreements

Registry base agreement

Specification 6 (4):
• Abuse PoC, malicious use of orphan glue records

Specification 11 (3):
• Registry Operator agrees to perform the following specific public interest commitments…

https://www.icann.org/resources/pages/registries registries-agreements-en

Registrar Accreditation Agreement (RAA13)

Section 3.18:
• Abuse Point of Contact,
• Duty to investigate reports of abuse: “reasonable and prompt steps to investigate and respond appropriately to any reports of abuse”
• Publish procedures for receipt, handling, and tracking of abuse reports

Section 2.2:
• Abuse/Infringement Point of Contact for Privacy/Proxy Provider
• Publish process or facilities to report abuse of a domain name registration managed by the P/P Provider

• https://www.icann.org/resources/pages/approved-with-specs-2013-09-17-en
Cross-Community Session: Towards Effective DNS Abuse Mitigation: Prevention, Mitigation & Response, http://sched.co/9now

Statistical Analysis of DNS Abuse in gTLDs Study (SADAG) http://sched.co/9nmp

GAC PSWG presentation to GAC Plenary, http://sched.co/9np5
Agenda

- What is DNS Abuse? DNS Misuse?
- Examples of DNS Abuse or Misuse
- Abuse in an ICANN Context
- Evolving DNS Threat Landscape
The outlook gets grimmer and grimmer, every day…

- More and better botnets
 - DDoS as a Service?
 - Fast-flux, double-flux redux!
 - Spam as a cloud service
 - Example: Avalanche malware and DNS hosting infrastructure

- Internet of Vulnerable Things
 - Botnet recruitment to next level
 - Example: Mirai malware capable of IP, TCP, UDP, DNS volumetric attacks

- DNS: “Ignition key” or “kill switch” for emerging class of attacks?
 - Example: Wannacry, Wannacrypt

https://www.flickr.com/photos/roach/
Do you really wannacry? DDoS Kits and Services

- Volumetric attacks continue to increase in number and scale
 - Attack kits are easy to obtain (Saddam, LOIC, SlowLoris)
 - DDoS for Hire (DDoS as a Service)
 - “Booters” or "stressers" are available for fee or free
 - Services often operated from cloud or content delivery networks
Avalanche malware and DNS hosting infrastructure

- Criminal malware and DNS hosting infrastructure
 - Evolved from botnet to malware delivery service
 - Bulletproof hosting used double fast-flux
 - Predominantly used for financial fraud attacks

- Avalanche offered a “cloud customer experience”
 - Criminal domain registrations
 - Access to a C2 server and service assets (bots)
 - Choice of Malware: 20 families available

<table>
<thead>
<tr>
<th>Andromeda</th>
<th>Nymaim</th>
<th>Carberp</th>
<th>KBot / Bolek</th>
<th>Panda Banker</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoreBot</td>
<td>Ranbyus (.tw)</td>
<td>Doc-Downloader</td>
<td>Rovnix</td>
<td>Dofoil</td>
</tr>
<tr>
<td>Slempo</td>
<td>GOZI2</td>
<td>Teslacrypt</td>
<td>GozNym</td>
<td>Trusteer App</td>
</tr>
<tr>
<td>KINS</td>
<td>URLZone</td>
<td>Marcher</td>
<td>VawtrakMatsnu</td>
<td>Xswkit</td>
</tr>
</tbody>
</table>
Avalanche Timeline

2008 • Rock Phish dwindles

2009 • Avalanche appears

2010-2012 • Avalanche evolves into malware delivery service

2012-2016 • Operation Avalanche
 • 30 countries
 • 64 TLDs, 40 operators
 • Public-private actors
 • MLATs, court orders

2016 Nov 30 • Dismantling action
 • Arrests

Why did it take so long to dismantle this operation?
Attackers operate at Internet pace

Figure 2. Representative Timeline for A Botnet-Enabled Criminal Attack
Avalanche Outcome

5 arrests in 4 countries
37 searches in 7 countries
39 servers seized in 13 countries
221 servers taken offline

64 TLDs
830,000 domains in 26 countries

Awareness raising and prevention
Victim remediation
Mirai: A Lesson in Not Learning from Our History

History shows that we introduce new attack vectors with each new technology wave

- New/custom OSs, streamlined software, apps
- Modifications to general purpose operating systems
- New actors: a new generation of developers who are unfamiliar with vulnerability history
- New actors fall prey to errors of prior generations of developers, e.g.,
 - Lax configurations
 - Little consideration for security or data protection
“Vulnerable IoT devices are subsumed into the Mirai botnet by continuous automated scanning for and exploitation of well-known, hardcoded administrative credentials present in the relevant IoT devices.

These vulnerable embedded systems are typically listening for inbound telnet access on TCP/23 and TCP/2323.”

Roland Dobbins, Arbor Networks

Warning bells Mirai rings for us all

- Mirai characteristics expose many IoT security issues
 - A botnet that is largely comprised of IoT devices
 - The compromised devices use plain text channels that have long been regarded as unsecured and removed from use in previous waves of technology
 - The default credentials for these services are known and shared
 - The devices can be re-purposed for many kinds of attacks

- An IoT-populated botnet: **DDOS as a service to a new level**
Wannacry, Wannacrypt Ransomware

January 16: US CERT SMB Vulnerability Advisory

February 10: First infection report

March 14: Microsoft Patch

March 27: Wave #2

May 12: Wave #3

May 13: New Wannacry variant

May 13: Researcher discovers and sinkholes unregistered C&C domain

May 14: Researchers discover and sinkhole second unregistered C&C domain
Malware author may have outwitted himself while attempting to protect code against analysis
- Intention was to have malware detect sandbox (analysis)
- Instead, malware on infected computers attempted to connect to Command-Control server

By registering the domains for sinkholing purposes, the researcher “unknowingly killed the malware”

IF my ransomware fails to connect to the C2 then it’s safe to encrypt the victim system
ELSE IF
my ransomware does connect to the C2 then exit process to avoid analysis

That’s right... I think... yeah... Ok... coffee

https://www.flickr.com/photos/striatic/
Discussion

Is this the best we can do?

https://www.flickr.com/photos/movmind/
Engage with ICANN

Thank You and Questions
Visit icann.org
Email: dave.piscitello@icann.org

@icann
facebook.com/icannorg
youtube.com/icannnews
flickr.com/icann
linkedin/company/icann
slideshare/icannpresentations
soundcloud/icann