.tr DDoS Attack

December 2015

Attila Özgit
.tr ccTLD Manager
Dec, 2015 .tr DDoS Attack

A Summary of a 3 weeks long experience ...
Before DDoS

- Infrequent Small scale DoS and DDoS Attacks
 - Few times every year
 - 5-30 mins. each
 - Mostly to our registry services
 - www.nic.tr

- 6 NS at 5 different locations
 - All open source
 - Linux, Bind, NSD
 - Average Bandwidth: 1.5 Mbps per server
 - 1.250 QPS per server
Communication Infrastructure

- 3 major ISPs serving TR Internet
 - Each connected to Tier-1 at various locations
 - No topology info on our side
 - Abstraction: 3 major pipes to TR
- 4 NSs downstream of ISP-A
- 1 NS downstream of ISP-B
- 1 NS @Europe
Anatomy of the DDoS

[Diagram showing the anatomy of a DDoS attack, with an attacker sending spoofed UDP packets to a botnet, which then sends queries to open authoritative DNS servers that are not rate-limited. The queries are amplified by 10th to 150th in nic.tr DNS servers.]
DDoS Attack

- Started at 14 December 2015 10:20
 - Went on nearly for 3 weeks
 - Towards the end, changed its target to Finance and Government sectors
- Basically a "DNS (UDP) Amplification Attack"
 - Botnets sending spoofed query packets to
 - Open DNS resolvers
 - Authoritative DNS servers (no rate limiting)
 - Amplified by 10-150 times by victims
 - %25 of victims are from TR IPs
 - Targets 6 NS Servers
 - Secondary target was our registry services (Web)
During the Attack ...

- Mainly between 09:00-17:00
 - Working hours! (1st shift)
 - 185,000 QPS per server
- Reduced rate and different nature of attack during 2nd and 3rd shift
- All NSs were almost always up
 - Reachability and delay problems due to overloaded pipes
- Volume
 - One ISP reported 220 Gbps attack bandwidth
 - No synchronized picture of attack history
- Might be one of the largest DDoS attack observed at the time
Basic Defense Mechanisms

- Make the surface to be attacked wider
 - Increasing the # of NSs
- Analyze traffic
 - Figure out drop rules to be used
- Adaptively react by reconfiguring mitigation services and devices
 - Attackers were highly adaptive to our defence
Observations

- Major attack classes
 - UDP flooding
 - Spoofed packets
 - Source Port 53, Destination Port 53
 - ...
 - Almost all known attack patterns

- Other attacks
 - Application attacks
 - TCP based

- No Ingress/Egress filtering in subnets
- 8% of registered NSs in our registry DB are “Open Resolvers”
Observations and Lessons

- **Importance of quick RZM mechanisms**
 - Updates were not quick enough
 - DOC Checks *(Not Anymore)*

- **Effective communication mechanisms**
 - Within the registry tech team
 - Use of Near Real Time technologies (Chat, etc.)
 - Between Registry and Upstream Operator
 - Tech team correspondance
 - Critical communication should be in written form
 - Rules to be coded
 - All critical communication should be tolerant to DNS failures

Dec 2015 DDoS Attack on .TR
Observations and Lessons

- Effective (and concurrent) communication with
 - IANA/ICANN
 - Other ccTLDs
 - Other organizations within the country
 - National CERT
 - Press (Media)
 - Upstream operators
After the Attack

- Infrequent, relatively light, 5-10 minutes DDoS Attacks are still coming in

- Administrative measures
 - List of critical domain names (Gov, Banks, etc.) expanded
 - $100 \rightarrow 600 \rightarrow 1,000+$

- Temporarily
 - Zone Updates are done 3 times per day
 - Manual inspection of zone updates
Current DNS infrastructure

- 8 ns for tr.
 - 2 of 8 are ANYCAST (DynDNS)
- 12 ns for second level (com.tr, gov.tr etc...)
 - 3 of 12 are ANYCAST (DynDNS, PCH)
- With ANYCAST 100+ DNS servers
- Isolated zone creation
 - Locked critical names
 - Automated security checks
 - Security checks by humans
- Multiple hidden master servers
Thank You