Climate Analysis with Galaxy

Anne Fouilloux1, Jean Iaquinta1
and Kirstin Krüger1

With many thanks to Bérénice Batut2, Björn Grüning2, Anup Kumar2 and @galaxyproject

1University of Oslo, Norway
2University of Freiburg, Germany
Overview

• Starting point
• Objectives
• Approach
• Status
• Lesson learnt
• Future plans
Infrastructure for Norwegian Earth System modelling

• Upgrade/maintain/optimize Earth System Models (ESM) suitable for the national climate community & participation in Climate Model Model Intercomparison Projects (CMIP)

• Provide an e-infrastructure for simulations, storage, analysis and validation

• Connects to international data grids and ensures that model data complies with established standards of the climate community.

AND...
A long term goal: Open and reproducible Climate Science by default
FAIR and Open: of course we do...

There is a wealth of data1 and information available about the past, current and future climate.

• Is this information easily accessible, discoverable or reusable?

• Can we trust everything we find? Which information to use when and how?

• What about local and regional impacts of global change?

• Should we better support education and innovation?

1 Climate models, model outputs, diagnostic tools, etc.
From exclusive to inclusive

- Cover needs from students, researchers, decision makers, businesses, media, artists, citizen, etc.

- Cater for cross-disciplinary aspects

- Cater for different expectations and different level of expertise in climate Science, data & visualization analysis, programming, etc.

Our choice: Galaxy Community Hub
Galaxy ecosystem for Climate Analysis

Manage source codes

Create containers for tools

Compute & Storage

Manage packages

Share and publish tools & workflows
Example: Community Earth System Model

A one-time effort

CESM package and containers for all

Command Line Interface
Status: Community Earth System Model

bioconda / packages / cesm 2.1.1

The Community Earth System Model (CESM) is a coupled climate model for simulating Earth's climate system.

- Easy deployment on cloud computing resources
- Speed-up prototyping (ex: testing new variable resolution grid over Europe)
- Single column

Conda

License: BSD 3-Clause
Home: https://github.com/ESCOMP/cesm
Documentation: http://www.cesm.ucar.edu/
294 total downloads
Last upload: 15 days and 7 hours ago

Installers
conda install

To install this package with conda run:
conda install -c bioconda cesm
Example: Coupling climate and economic models
Status: https://climate.usegalaxy.eu

- 4 tools published and many more in preparation!
- Climate tools deployed on climate.usegalaxy.eu
- Galaxy tutorial “Getting your hands on climate data” in preparation
An ECV is a physical, chemical or biological variable or a group of linked variables that critically contributes to the characterization of Earth’s climate.

https://gcos.wmo.int/en/essential-climate-variables
Get and Plot with different views/projections

Copernicus Essential Climate Variables for assessing climate variability (Galaxy Version 0.1.4)

Variable(s)
- Select/Unselect all
- Surface air temperature
- Surface relative humidity
- 0-7cm volumetric soil moisture
- Precipitation
- Sea-ice cover

Select type of data
- Monthly mean

Select year(s)
- Select/Unselect all
- 2019

Select month(s)
- Select/Unselect all
- January
- February
- March
- April
- May
- June
- July
- August
- September
- October
- November
- December

Advanced Options

Execute
Monthly surface air temperature anomalies relative to 1981-2010

Temperature anomalies (celcius)

https://climate.copernicus.eu/surface-air-temperature-may-2019
Visualization with OpenLayers

Volcanic eruptions since 1960

https://volcano.si.edu/database/webservices.cfm
Lessons learnt

• Choose a community rather than a standalone technical solution
• Mentoring is very valuable for onboarding new communities
• Training is paramount
Way forward: from local to global

INES - *Infrastructure for Norwegian Earth System modelling* (NRC grant 270061)

Nordic Infrastructure Collaboration on Earth System Tools (NICEST)

https://nordicesmhub.github.io/

Mozilla Open Leaders Program
What’s next?

• **New tools** will be included in the Galaxy Toolshed
 - Full access to Copernicus re-analysis (ERA-5) and not only ECVs
 - Full access to past and future Climate projections (CMIP5, CMIP6)
 - Improve visualization
 - Include Earth System Models (CESM, CLM, etc.) and FLEXible PARTicle dispersion model (FLEXPART)

• **Training:**
 - Galaxy tutorial “Getting your hands on climate data”
 - Galaxy tutorial “Earth System Models”
FEEDBACK IS WELCOME!

THANK YOU

climate.usegalaxy.eu

The Galaxy server that was used for most plots and calculation shown in this presentation is in part funded by Collaborative Research Centre 992 Medical Epigenetics (DFG grant SFB 992/1 2012) and German Federal Ministry of Education and Research (BMBF grants 031 A538A/A538C RBC, 031L0101B/031L0101C de.NBI-epi, 031L0106 de.STAIR (de.NBI)).