Network Telescopes Revisited
From Loads of Unwanted Traffic to Threat Intelligence

Piotr Bazydło, Adrian Korczak, Paweł Pawliński

Research and Academic Computer Network
(NASK, Poland)
Who are we

Piotr Bazydło
Head of Network Security Methods Team NASK
@chudyPB
piotr.bazydlo@nask.pl

Adrian Korczak
Network Security Methods Team NASK
adrian.korczak@nask.pl

Paweł Pawliński
CERT Polska
pawel.pawlinski@cert.pl
Network Telescope

• Also known as **darknet** or blackhole.

• Unused IP address space.

• No legitimate network traffic should be observed.

• First (?) & largest telescope (approx /8): **caida**
Network Telescope

In practice, we can see a lot of different activities:

- Misconfiguration of network devices/applications.
- Scanning.
- Backscatter from DoS attacks.
- Exploitation attempts (UDP).
- Weird stuff.
DoS attacks (backscatter)
What we want to achieve?

• Detect large-scale malicious events (botnets, exploits).
• Detect attacks on interesting targets.
• Track activities of specific actors responsible.
• Understand the dynamics (trends).
Problems

• How to group packets?
• How to classify them into events?
• How to find interesting events?
• How to identify actors?
• How to analyze trends?
Our approach

1. Monitored IPv4 space: > 100,000 addresses
2. Analyze captured traffic every 5 minutes.

Stats:

~ 10,000 pps
~ 25,000,000,000 packets per month
80% = TCP
Two parsing scripts:

- **Parser L4** – up to 4th OSI layer. written in C++, uses libtins library.

- **Parser L7** – parsing of 7th OSI layer. written in python, uses dpkt library.
Traffic going to network telescope

Parser up to L4

Parser L7

Initial aggregation

Aggregator 1

Aggregator ...

Aggregator N

Redis
Traffic going to network telescope

Parser up to L4

Parser L7

Initial aggregation

Aggregator 1
Aggregator ...
Aggregator N

Analysis

Analyzer TCP
Analyzer UDP
Analyzer DNS
Analyzer amplifiers
Analyzer ...
Analyzer SIP

Redis
Traffic going to network telescope

Parser up to L4 → Parser L7

Initial aggregation
- Aggregator 1
- Aggregator ...
- Aggregator N

Analysis
- Analyzer TCP
- Analyzer UDP
- Analyzer DNS
- Analyzer amplifiers
- Analyzer ...
- Analyzer SIP

Elastic Search

Redis
Case study 1
Botnet Fingerprinting
Botnet fingerprinting
Botnet fingerprinting

Do you see port 8080 scan going up sharply as of now? Satori is coming back with a new variant, will provide more detail tonight (tomorrow morning Beijing time)
Botnet fingerprinting

In total, about 45,000 unique IP addresses were identified.

Distribution of source IPs

- Vietnam: 24,830
- China: 3,540
- Korea, Republic of: 3,186
- Thailand: 2,728
- Japan: 1,467
- Mexico: 1,189
- United States: 936
- Hong Kong: 670
- Russian Federation: 621
- Ireland: 578
Case study 2
Memcached
Memcached
UDP SCANS ON PORT 11211

Github 1.3 Tbps DoS
Reported 1.7 Tbps DoS

Packet Count
0 1M 2M 3M 4M 5M 6M 7M 8M
Day 1 – 20.02 (first scan)

- Only 4 IP addresses
- Source: DigitalOcean, UK
- Duration: 25 minutes
- Constant source port per source IP
- One payload used (memcached statistics)
Day 5 – 24.02 (new actor)

• Only 1 IP addresses
• Source: AS 27176, DataWagon LLC, US
• Small hosting with anti-DDoS
• Randomized source ports
• New payload
• Scan lasted longer: 3 hours
And so on… Pre-GitHub scanners

■ About 60 IP addresses.
■ Several scanning patterns.
And so on… Post-GitHub scanners

Distribution of source IPs

- About 315 IP addresses.
- Multiple scanning patterns.
Looking deeper into packets
PGA

• PGA = custom code to generate packets

• Usually simple operations, examples
 • constant values
 • byte swap
 • incrementation

• Leaves patterns that can be used for IDS

• Our tool detects patterns and creates new signatures
PGA examples

1. Mirai:
 \[TCP_SEQ = IP_DST \]

2. XoR.DDoS PGA:
 \[IP_ID = SPORT \]
 \[TCP_SEQ[1:2] = IP_ID \]
PGA Example

<table>
<thead>
<tr>
<th>IP SRC</th>
<th>IP DST</th>
<th>IP ID</th>
<th>SPORT</th>
<th>DPORT</th>
<th>DNS ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>6b d6</td>
<td>a1 c6</td>
<td>6b 4a</td>
<td>80 35</td>
<td>CF 6b</td>
<td>35</td>
</tr>
</tbody>
</table>
Signatures everywhere

SYN FLOOD on IP belonging to Google – full of PGA signatures.

PGA signatures detected during SYN FLOOD
Signatures everywhere

SYN FLOOD on IP belonging to Google – full of PGA signatures.

PGA signatures detected during SYN FLOOD

1. SPORT = TCP_SEQ[1:2]
2. TCP_SEQ[3:4] = 0xFFFF
3. SPORT = IP_SRC[3:4]
Operations
Operational value of network telescopes

- Raw output from analyzers is not actionable (too many events)
- **Scans** → abuse notifications (automated for high confidence events)
- **PGA fingerprinting** → Shadowserver remediation feeds
- **DoS attacks** → situational awareness & alerts
- Automated feeds provide limited “intelligence”
DoS backscatter for the Polish IPv4 space (color = PGA fingerprint)
Sharing threat information

- Automated distribution of abuse reports & IoCs
- Free
- > 100 active participating entities
- > 50 data sources
- Formats: JSON & CSV & more
Interested in getting the data?

- Network owners: send an email to n6@cert.pl to sign up
- Usually working with national CSIRTs
Aiming for actual intelligence

- In-depth analysis of events extracted from the traffic
 - insight into TTP
 - more difficult to automate
- Anomaly / trend detection:
 - forecast exploitation campaigns.
 - new campaigns
- Attribute activities to botnets / actors
Future plans

• Combine network telescopes with other data sources
 Honeypots, sandboxes, botnet tracking

• Research collaboration:
 Looking for help in linking PGA signatures to tools / malware
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 700176.

https://sissden.eu