A Social Philosophy of Science

An Affiliated Meeting

a. The names and email addresses of the organizer(s) and the speakers of the affiliated meeting with their homepage addresses.

Ilya Kasavin, Institute of Philosophy, RAS, Russia
itkasavin@gmail.com;
http://eng.iph.ras.ru/kasavin.htm

Rom Harré, Georgetown University, USA
harre@georgetown.edu
http://explore.georgetown.edu/people/harre/?PageTemplateID=366

Thomas Rockmore, Duquesne University, USA
rockmore@duq.ed;
http://www.duq.edu/academics/faculty/tom-rockmore-(emeritus)

Alexander Ruser, Zeppelin University, Germany
Alexander.Ruser@zu.de;

b. A description of the aim and scope of the meeting

An idea of social philosophy of science aims at the revisiting the agenda of the current STS. New movements in understanding science-society interaction require more realistic image of knowledge as complex, self-developing, human-dimensional system that could be separated from the context only in abstraction. Accordingly, its analysis is impossible without a proper social ontology and interdisciplinary interrelation of the social and the human sciences.

The topicality of philosophy of science is linked with the necessity to develop world economy within the parameters of the 6th technological order. This order presupposes such kind of the science-consuming restructuring of production and management, when intellectual abilities, skills and diverse knowledge types as characteristics of productive forces, the horizontal regulation of creative activity, “soft” dialogic forms of organization and communication enter the front edge. The scientific and philosophical studies of the cognitive and social dimensions of science and technology being determined by the level of scientific and social growth essentially influence the subject matter of their own. The historical correlation of rapid development of science and technology (industrial revolution) and the rise of philosophy of science in the middle of the 19th century might be assessed as a form of positive feedback.

And yet the tradition of science studies develops on the basis of the partly out of date post-positivist concepts of science and technology. A philosophy of science as a scholarly discipline exists today side by side with other disciplines within an interdisciplinary framework of the history and philosophy of science (HPS) or science and technology studies (STS). The rationale for this “joint venture” is commonly seen in the division of labor. The history of science focuses on the rise and development of scientific theories in the past; the sociology of science deals with science as a social institution; the psychology of science investigates the mechanisms of creativity and one’s personal impact upon scientific discoveries; and finally, the philosophy of science is responsible for the logical and methodological analysis of the structure and growth of the scientific knowledge, mostly within the context of justification. This allegedly fruitful division of labor presumes an independent existence of social, personal and cognitive domains,
and the desired interdisciplinary communication between the correspondent disciplines aims to account for the complementary understanding of science. But in fact no sufficient exchange of meanings takes place for every discipline insists upon its independence and prior significance. Under these conditions, neither a consistent picture of science appears to be possible nor might science policy be construed and justified basing on this disintegrated conglomerate of knowledge. A way out of the dead end must be found out to save philosophy of science as a prospective enterprise.

The idea of piecemeal social engineering lies in the background of the current philosophy of science and STS being opposed to utopian social forecasting and projecting. It means the prohibition of the global prognostics and social construction of the future, which allegedly leads to unforeseen results and negative consequences. This comes to dissent with the well-accepted facts of world globalization, although the latter is hardly conceived as an account of overall interconnection and interdependence of world variety but rather as total movement following the standards of the developed countries. Thereby science studies mostly justify and legitimize the established science policy propagating narrow empirical methodology (reductionism, naturalism) devoid of any prospective philosophy and world view. Science studies come to be merely descriptive in their analysis of the current status quo and insist on the negative attitude to those philosophical and scientific trends (feminist epistemology, Marxism, Russian cosmism, post – and transhumanism) that make emphasis on the significance of the long term social forecasting, planning and projecting. At the most this has already led to a certain internal conceptual crisis, which some of the advanced representatives of science studies criticized (B. Latour, S. Fuller, D. Mackenzie etc.). All this requires problematization, critical analysis and conceptual revision of the socially oriented philosophy of science. One of the possible gateways might be a revision of disciplinary structure of science studies and the actualization of their philosophical components; the reanimation of the idea of global projecting and its critical consideration.

c. Short (max 300 words) abstracts of the planned talks

Rom Harré. How an affordance based on philosophy of chemistry makes room for social and personal factors in the research process?

The `standard model’ of scientific research and theorising assumes that by continuous refinement of methods and concepts we can reach knowledge of the material world that is unmediated by any intervening processes. This is the picture inherited from Locke and the philosophy of science of Robert Boyle. However, science is the product of the work of particular people in particular places in particular cultural conditions. Every scientific claim involves indexical marks of its origins. By adopting an affordance analysis of scientific work, and linking this with the concept of the Umwelt we can open up a necessary space for social and personal considerations at the heart of the scientific project. These are made clear by making use of the recent discussion of mereological fallacies, in attempting to reason from knowledge of wholes to that of their parts and vice versa.

Ilya Kasavin. Social Philosophy of Science: A New Turn in STS

What is peculiar for a social philosophy of science? It is inspired by the idea of the unity of the human mind (A.N. Whitehead, W. Quine, Russian cosmists). Today there are many reasons to justify this holism in order to find the way through various methodological and value controversies. Nearly every basic epistemological concept represents a controversy of this kind. It is the case e.g. with the concepts of rationality and truth, which balance between the technical, instrumental, formal approaches, on the one hand, and the abstract, fuzzy, metaphysical ones, on the other hand. Neither the former nor the latter go beyond the well-known classical
philosophical trends, which hardly correspond to a variable, dynamic, contradictory picture of
the different cognitive practices within the multiplicity of their cultural and social contexts.
Although the history and sociology of science and culture gradually and tacitly approach this
picture, they lack proper methodological tools.

The way to the theoretically rich and practically applicable image of knowledge might be
provided by the concepts like “activity”, “communication”, “context”, “culture”, “discourse”,
“dialogue”, “author”. The correspondent appeal to overcoming a demarcationist approach often
lacks understanding. Rigid boundaries limiting the transdisciplinary scope of epistemological
study determine a number of negative consequences. There are: 1) the exaggerated separation of
the philosophical disciplines from one another (epistemology, philosophy of science – social
philosophy, ethics, anthropology, religion studies etc.); 2) the consequent methodological
weakness of non-epistemic studies; 3) the empirical emptiness and practical impotence of
epistemology; 4) the idealized and perverted picture of the history of science; 5) the
unbridgeable gap between “the cognitive” and “the social”. Taking seriously the “internal
interaction” between science and society requires a new turn in STS.

Tom Rockmore. Hegel, Newton and epistemic constructivism

Epistemic constructivism, which arises in modern philosophy in Hobbes and Vico, is central to
German idealism. Kant’s a priori form of epistemic constructivism is succeeded by Hegel’s a
posteriori form. From his a posteriori epistemic perspective Hegel criticizes Kantian
philosophical epistemology and Newtonian scientific epistemology in formulating an alternative
approach. Hegel’s approach to cognition in both philosophy and science is broadly hermeneutic.
This paper examines Hegel’s critique of Newtonian science. This critique runs throughout
Hegel’s writings beginning with his Dissertation on the orbits of the planets. I argue Hegel
successfully criticizes Newtonian science, which he correctly assimilates to Kant’s a priori
approach. I further argue that Hegel’s constructivist approach to scientific cognition is up to date
in two ways. First, long before Dilthey, Hegel thinks, on the contrary, that knowledge of nature
requires interpretation of nature. Second, Hegel’s a posteriori alternative integrates the social
aspect into science but avoids collapsing the scientific into the social while also maintaining
empirical realism.

Alexander Ruser. The Role of Social Scientists: The Diverse Virtues of Social Knowledge

Three issues that are at the core of reflections about the societal role of social science knowledge
are addressed:
(1) Social scientists if they self-consciously chose to do so tend to follow -- although this is not
always a deliberate choice -- one of three models that describe their role as the producers of
practical knowledge. However, the practical virtue of social science knowledge is not only
determined by its producers. Even more significant for the kind of practical impact of the social
sciences, the “users” of their knowledge treat social science knowledge as indicative of
performing practical “work” following one of our three models. For the sake of simplicity we
have called the three models, the model of the technician, the model of the advisor and the model
of the meaning producer.
(2) The matter becomes more complicated as the result of the need of social inquiry to adopt a
particular restrictive perspective of their domain. Hence a widely supported notion, at least
among social scientist, must be put into question: when asked about the reasons for the limited
“power” of social science knowledge the response frequently is that the adequacy and practical
usefulness of social science knowledge is a function of capturing the full complexity of what
indeed are complex social phenomena.
(3) Social scientists often tend to lament about the marginal impact their intellectual efforts have
on society and they glance with great envy across the divide of the so-called two cultures and
wonder how and when they will be able to achieve the same kind of success and prestige the natural science and technology appear to enjoy in most societies. However, this dejected view systematically understates the actual power of social science knowledge, in particular in its role as meaning producers.

d. A preliminary program of the affiliated meeting

The meeting is planned for two afternoons (5-6 August 2015), 14.00 – 17.00. At least four main papers will be presented and discussed (Kasavin, Rockmore, Harre, Ruser). The participation of the following scholars as possible speakers and commentators is expected: Finn Collin (Copenhagen University), Alexander Antonovsky (Institute of Philosophy RAS), Inanna Hamati-Ataya (Aberystwyth University), Joan Leach (Queensland University).

The discussion will focus on the following questions:

1. Is there any possibility to save or justify the image of knowledge as a mirror copy of reality? If not, how could it be transformed or dismissed?
2. Is it necessary to overcome the “demarcationist” view of knowledge as identical with science? How can it be done without mixing science with non-science?
3. Should epistemology and philosophy of science strengthen the role of the creative cognitive agent? How can this concept be explicated and defined?
4. Does the conceptualization of creative cognition necessarily imply any form of social constructivism? What are the prospects and limits of naturalistic account of creativity?
5. To what extent does philosophy of science keep its independence from other philosophical disciplines?
6. Are there any reasons to revisit the epistemological status of the natural sciences as the only cognitive ideal?
7. Should new philosophical interpretations be viewed as a necessary feature of any case study? Or could be the latter considered as a new version of the “neutral language of observation”, which gives a “crucial justification” of a theory?

Affiliated meetings must meet the following conditions:

1. The program must be approved by the Program Committee.
2. Each participant (speaker) of the affiliated meeting must be a registered participant of CLMPS 2015 or Logic Colloquium 2015.
3. The symposium is open to all participants of CLMPS 2015 and Logic Colloquium 2015.
4. The length of an affiliated meeting should not exceed one full day.
5. The CLMPS 2015 organizers should receive the final program of the affiliated meeting to be included in the program book by 30 April, 2015.
6. Proposals for affiliated meetings should be sent by using the CLMPS 2015 abstract submission form. Unlike other CLMPS 2015 submissions, affiliated meetings submissions are not blind-reviewed, and therefore the abstract text should include: a. The names and email addresses of the organizer(s) and the speakers of the affiliated meeting with their homepage addresses. b. A description of the aim and scope of the meeting. c. Short (max 300 words) abstracts of the planned talks. d. A preliminary program of the affiliated meeting. The maximum length of the affiliated meeting proposals is 4000 words.