ABSTRACTS

C1.8 Philosophy of the Formal Sciences

Dispensability of Higher-Order in Mathematics

Besim Karakadilar, Philosophy, University of Helsinki, Helsinki, FINLAND

A generalization of the translation of existential second-order sentences to independence-friendly logical sentences shows that further complications in the hierarchy of second-order sentences is actually a combinatorial deepening of first-order sentences with arbitrary independences between quantifiers and connectives. Hence by way of such generalization the entire second-order logic can be reconstructed in the fully extended independence-friendly logic. The reconstruction in question proves that higher-order notions are, on the most elementary level, dispensable in mathematical reasoning. Therefore, at least in principle, mathematical reasoning can be logically analyzed solely on the level of particular constructions. It will be argued that the particular constructions in question can be freely introduced into the reasoning, and hence there is no limitation that is dictated by the order of logical rules on mathematical activity.

Constructive Axiomatic Method in Euclid, Hilbert and Voevodsky

Andrei Rodin, Institute of Philosophy, Russian Academy of Sciences, Moscow, RUSSIAN FEDERATION

The version of axiomatic method stemming from Hilbert [Hilbert (1899)] and recently defended by Hintikka [Hintikka (2011)] is not fully adequate to the recent successful practice of axiomatizing mathematical theories. In particular, the axiomatic architecture of Homotopy Type theory (HoTT) [Voevodsky et. al. 2013] does not quite fit the standard Hilbertian pattern of formal axiomatic theory. At the same time HoTT and some other recent theories fall under a more general and in some respects more traditional notion of axiomatic theory, which I call after Hilbert and Bernays [Hilbert&Bernays (1934-1939)] “genetic” or “constructive” (interchangeably) and demonstrate it using the classical example of the First Book of Euclid's
“Elements”. On the basis of these modern and ancient examples I claim that Hintikka’s semantic-oriented formal axiomatic method is not self-sustained but requires a support of some more basic constructive method. I provide an independent epistemological grounding for this claim by showing the need to complement Hintikka’s account of axiomatic method with a constructive notion of formal semantics.

Bibliography:


[Hilbert(1899)]: Hilbert D. (1899), Grundlagen der Geometrie, Leipzig.

[Hilbert&Bernays(1934-1939)]: Hilbert D. and Bernays P. (1934-1939), Grundlagen der Mathematik (in two volumes), Springer.


[Voevodsky et al. (2013)]: Voevodsky V. et al. (2013), Homotopy Type Theory: Univalent Foundations of Mathematics, Institute for Advanced Study (Princeton).

Geometric reasoning and geometric content

Dirk Schlimm, Philosophy, McGill University, Montreal, CANADA

According to the modern view of geometry, geometrical content is determined by a consistent set of axioms (which define structures implicitly, but do not express propositions) and further articulated through logical deductions. However, neither Bolyai nor Lobachevski, whose investigations of hyperbolic geometry initiated the move towards the modern view, regarded geometry in this fashion. Nor were considerations of consistency the driving force of Beltrami and Klein’s famous ‘models’ of non-Euclidean geometry. Thus, it seems that the modern view of geometry cannot account for the developments in 19th century geometry that led to it. In this paper, some of the background of the emergence of the modern view of geometry is presented. In particular, I will focus on three distinct developments: the work on ‘abstract’ geometry and its relations to Euclidean geometry (Bolyai, Lobachevski, Beltrami, Klein), the realization of duality in projective geometry (Poncelet, Gergonne), and the work on axiomatizations of geometry (Pasch, Hilbert). These developments reveal that two different modes of reasoning were at play in the geometric investigations in the 19th century: An objectival mode, where language is merely a means to reason about geometric objects, and an linguistic mode, which focuses on the language itself. I will argue that these two modes of reasoning gradually led to a separation of the syntactic (linguistic) and semantic aspects of
geometrical reasoning, which can be found in the views expressed by Poincaré and Hilbert at the turn of the 20th century. Finally, I propose two different notions of geometric content that are tied to the two modes of reasoning just mentioned, in order to interpret the various practices of geometry in the 19th century.

Gödel's Second Incompleteness Theorem Is Predicate Dependent

Alexandr Bessonov, Logic and epistemology, Institute of Philosophy and Law, Novosibirsk, RUSSIAN FEDERATION

(See page 4)
Gödel’s Second Incompleteness Theorem Is Predicate Dependent

A. V. Bessonov

Abstract. It is shown that Gödel’s proof of the second incompleteness theorem for formal arithmetic depends on the chosen provability predicate. We come up with an unprovability predicate which is used to construct counterexamples to the second theorem and prove that in the general case the conclusion of the second theorem is not true.

Mathematics Subject Classification (2010). Primary 03A05; Secondary 00A30.

Keywords. Gödel’s incompleteness theorems, inadequacy of provability predicate, unprovability predicate.

According to Gödel’s second incompleteness theorem, if the formal Peano arithmetic (PA) is consistent then Consis, i.e., the formula

$$\exists x \forall y \neg \text{Prov}(x,y), \quad (*)$$

is unprovable in PA. But the proof of the second theorem is clearly not sufficient to conclude that no other (nonequivalent to Gödel’s Consis) formula ‘expressing’ the consistency of PA is provable in PA. The question whether it is possible to construct a decidable formula ‘expressing’ the consistency of formal systems containing PA was taken up by S. Feferman, S. Kleene et al. However, the authors construct their formulas ‘expressing’ the consistency of PA as derivatives of the Gödel formula Consis and the provability predicate. But the provability predicate is not the best candidate to ‘express’ the consistency of PA.

The following is a simple consequence of the second theorem showing inadequacy of Gödel’s representation of unprovability:

Corollary (we call it Theorem 2+). (1) If PA is consistent, then, for any formula A, a formula that ‘expresses’ the unprovability of A is unprovable in PA.

(2) If PA is ω-consistent, then, for any formula A unprovable in PA, a formula that ‘expresses’ the unprovability of A is undecidable in PA.
According to this theorem, there exist infinitely many closed formulas that are undecidable in PA, and moreover, formulas that 'express' commonplace meta-arithmetic judgments, too, turn out to be undecidable. For example, Theorem 2+ implies that the formula

$$\forall y \neg \text{Prov}(\neg(0 = 0)^\uparrow, y),$$

which 'expresses' the unprovability of a formula $$\neg(0 = 0),$$ is undecidable and, hence, is unprovable in PA. In fact, however, a proof (by contradiction) that $$\neg(0 = 0)$$ is unprovable is quite elementary, provided PA is consistent.

It is very important to realize that the choice of a predicate Pr(x, y) and its corresponding formula Prov(x, y) (or their derivatives) as exceptional tools for representing (un)provability in PA—despite its apparent naturality—is in no way grounded by Gödel and his followers. These tools are chosen absolutely arbitrarily. Moreover, the question if it is possible to use radically different expressive means has not even been posed yet. Below we do look into just this question.

If PA is consistent, and $$\neg A$$ is a formula provable in PA, then A is obviously unprovable by the definition of consistency. Consider the unprovability predicate NP(x, y) which is satisfied iff x is the Gödel number of some formula and y is the Gödel number of a proof of its negation. Clearly, this predicate is decidable. Consequently, the predicate NP(x, y) is 'expressible' in PA via some formula NPProv(x, y), while the fact of there being an unprovable formula in PA is 'expressed' by the formula

$$\exists x \exists y \text{NPProv}(x, y). \quad (**)$$

A formula $$(0 = 0)$$ is derivable in PA, and so therefore is $$\neg\neg(0 = 0)$$ since $$\vdash ((0 = 0) \sim \neg\neg(0 = 0))$$ in PA. Let n be the Gödel number of a derivation of the formula $$\neg\neg(0 = 0).$$ The definition of a predicate NP(x, y) implies that NPProv$$'$$ is $$(0 = 0)^\uparrow, n)$$ is true. In view of the 'expressibility' conditions, therefore, NPProv$$'$$ is $$(0 = 0)^\uparrow, n)$$ is provable in PA. If existential generalization is applied twice to the last formula, then we arrive at a derivation of $$(**).$$ Thus a formula 'expressing' the existence of an unprovable formula is provable in PA. Consequently, arithmetic can well “prove its own consistency.”

Thus, the statement of the second theorem turns out to be predicate dependent: a formula that is based on Prov(x, y) and 'expresses' the consistency of PA is unprovable, while a formula based on NPProv(x, y) is elementarily provable. This directly disproves the generally accepted universal interpretation of the second incompleteness theorem: “In any theory containing arithmetic, any formula expressing its consistency is unprovable if the theory itself is consistent.”