1 Fregean Function Levels in Formal Languages

YAROSLAV KOKHAN
INSTITUTE OF PHILOSOPHY, NATIONAL ACADEMY OF SCIENCES OF UKRAINE, KYIV, UKRAINE
yarkaen@gmail.com

Modern predicate logic realizes in its formal languages Rasselian predicate orders but not Fregean function levels. Moreover, a predicate is just a partial case of a function, so predicate logic is not extremely wide and can be generalized to function logic. A function in this latter logic is no longer a map but a partial multimap, i. e., it can assign to any list of its arguments any number of values (including 0) and can have no arguments at all (i. e., can be a 0-ary function). If object s is a value of function t, we write down this fact by representation formula

$$s \approx t,$$

where representation \approx is a generalization of equality. For instance, if individual a_0 is a value of function f at arguments a_1, \ldots, a_n, we write down this fact as

$$a_0 \approx f(a_1, \ldots, a_n).$$

If there are functions among values of function t, and s is a value of one of such functions, then s is a value of a value of t; we write down this fact as

$$s \approx (t);$$

hence, a value of a value of ... a value of t (n times) has been written as '$(\ldots(t)\ldots)' ($n-1$ pairs of parentheses around of 't'). This is concerned with values of functions; we sign the very function f with arguments a_1, \ldots, a_n (with argument places x_1, \ldots, x_n, with no argument) by

$$f^{\overline{a_1, \ldots, a_n}}$$

(by

$$f^{\overline{x_1, \ldots, x_n}}$$

and

$$f^{\lambda}$$

respectively). So we obtain tautology

$$s \approx t \rightarrow (t^{\lambda} \approx r \rightarrow s \approx (r)).$$

The above expressions belong to untyped function logic (an outline of first-order function logic see in [1]).

References