Scaling a Distributed Container Management System: Diego Performance
Who Are We?

- James Myers
- Luan Santos
What We Will Cover

- A quick introduction to Diego
- Performance as product definition
- Designing performance experiments
- Evaluating Success and iterating to hit targets
- The future of Diego performance
What is Diego?
How much performance?

• Largely a product decision
 - We need N cells with N*K application instances

• Also engineering though
 - How does stress effect the system?
 - How fast can we operate vs how fast should we operate
Evaluating Performance

• Design Experiments
 – How do we artificially generate load in a realistic manner?
 – What types of load do we want to generate?

• Measure Performance
 – What metrics should we watch?
 – How do we characterize success?
Designing Experiments

• Smoke Tests (fezzik)
 – Run a large number of instances as fast as we can
 – Not truly a realistic scenario
 – Exposes obvious performance bottlenecks
Designing Experiments (cont.)

- Full scale performance tests
 - Push N*K CF applications to an environment backed by Diego
 - Perform smaller experiments on a loaded environment
 - Allow environment to “bake”
 - More realistic (production) load
Non Standard Performance Experiments

• Testing failure modes
 – ETCD failure
 – VM failure
 – How well does Diego converge?
Measure Performance

- Metrics emitted to Datadog
 - Bulk loop durations
 - Number of routes, LRP instances, etc

- Logs written to disk
 - Allows us to construct an LRP instance timeline through tagged log lines
Hitting our targets

• Early bottlenecks found quickly
 – Database server performance
 – Poorly tuned concurrency
 – JSON marshalling

• Solutions
 – BBS
 – More configuration
 – Protobufs
Results on 100 Cells

- Smoke Tests (fezzik)
 - 4k LRP Tasks in less than 30 seconds
 - Even less time spent in Diego components
 - No obvious bottlenecks
Results (cont.)

- Stress tests
 - 10k instances run successfully
 - No performance degradation over time
 - Let it sit for a week
Failure Modes

- **Killing ETCD**
 - How long did it take NSYNC to recover?
 - Applications kept running

- **Killing Cells**
 - Applications restarted on available cells until capacity is reached
 - Running favored over crashing
Rolling Deploys

- # of routes overtime stays constant
- # of running applications
- Extra evacuating instances and their impact
Conclusions from tests

- Successfully hit our first performance target
- Diego is extremely resilient to failure
- Room to grow
But what about more performance?

• 1000 cells? 200K instances?
 - Expensive to test
 - Hard to manage

• Benchmark-bbs
 - Focused tests to stress specific aspects of the system

• Astroturf
 - Don’t need to test garden to test Diego performance
Benchmark-BBS & Astroturf

- ETCD is a bottleneck
 - 200k instances is more data than ETCD can handle
 - Slow lookups, no indices, not a real database

- BBS performance degrades as number of instances increases
The Future

• BYOD (Bring Your own Database)
 – Mysql/Postgres
 – Built to handle large amounts of data at scale
 – Operators can choose the level of consistency needed

• Read BBS nodes?
 – Currently only one active

• In memory caching?
 – Remove read load from database
Thanks for listening. Questions?