Rebuilding a Faster OSD with Future
– the crimson project update

Radoslaw Zarzynski & Kefu Chai
Today’s storage

4K Read IOPS

- NVMe SSD: 500000
- SAS SSD: 190000
- SATA SSD / 6Gbit/s: 10000
- SAS HDD / 10k: 150
- SATA HDD / 7200: 75

* Data collected from https://en.wikipedia.org/wiki/IOPS
Today’s ethernet

Evolution of Ethernet

2010

2003 10000

1998 1000

1995 100

1980 10

* the date of creation of corresponding standard/specification.
Today’s CPU

42 Years of Microprocessor Trend Data

- Transistors (thousands)
- Single-Thread Performance (SpecINT x 10^3)
- Frequency (MHz)
- Typical Power (Watts)
- Number of Logical Cores

Year

Problems with OSD
Problems with OSD (cont.)
Problems with OSD
Solutions

- Lockless, share-nothing
 - Seastar
- Kernel bypass
 - DPDK and SPDK
- Minimal memcpy()
A proof of concept

crimson
Crimson OSD

Data flow diagram showing the interaction between messenger, PG, and Object Storage.
repeat([conn, this] {
 return conn.read_request().then([this](auto req) {
 return handle_request(req);
 }).then([conn] (auto result) {
 return conn.send_response(result);
 });
});
an (over) simplified OSD

- single replica
- memory-backed store
- only basic read/write supported
- no peering
random read (depth=16)
random read (depth=16)
random read (depth=16)
random write (depth=16)

https://docs.google.com/spreadsheets/d/1yoH_T3KXHHTTF6Eu4v5X2oehIluD7rQhtDoYAelbzI/edit?usp=sharing
Next Steps

Push forward the frontier
● Performance Test as part of CI
● Port more features
 – BlueStore
 – Scrubbing, recovery
● Seastore
 – Integrate SPDK into seastar
more about crimson

- 123 PRs since Jan 27 2018
- 7 developers from Red Hat and Intel
- under heavy development
 - Crimson/Seastar-OSD Weekly playlist in Ceph Channel on YouTube
 - crimson project kanban at https://github.com/ceph/ceph/projects/2