Topics

For those curious about the coverage of the book, here is an alternative contents listing.

Myth 1 Language learning and age; the Critical Period Hypothesis
Myth 2 Bilingualism
Myth 3 Input, output, and interaction
Myth 4 Attention and noticing
Myth 5 Explicit and implicit learning; developmental sequences; interaction
Myth 6 Correction and recasts
Myth 7 Individual differences
Myth 8 Social Approaches: pragmatics, emergentism, sociocultural approaches, language socialization
Children learn languages quickly and easily while adults are ineffective in comparison.

In the Real World

Hi, this is Jenifer. I have four bilingual children, all with different stories. Let me tell you about the one where language acquisition seemed very quick. In 2010, my husband and I ended up adopting a seven-year-old Japanese girl who only spoke Japanese and whose experience with English only went about as far as singing songs about numbers and colors in once-a-month English conversation classes. We adopted her and brought her into our home with three other children whose dominant language at the time was English. If we had been living in an English-speaking country, we wouldn’t have worried about her learning English, as we had seen other people adopt older children who seemed to quite quickly adjust to using English. However, since we were living in Japan and since all of us in the family were able to communicate in Japanese, we worried about how we would help our daughter become bilingual. However, we had a lot more pressing problems than having her learn English, such as helping an older child from an orphanage
adjust to life in a family, but we knew that eventually she would need to be bilingual to really fit into our family. Therefore, in the first year, from July 2010 to June 2011, we did not do much more than speak to our daughter, Aiko, in English some of the time.

Aiko was learning English, if she was learning it at all, mostly naturally, simply by living in a home with native English speakers. We spoke to our three other children in English, watched English movies at home, and read English as well as Japanese books to the children. But most often we spoke to Aiko in Japanese because communicating with her was our first priority. During the school year I spent about two hours a week teaching her vocabulary and basic phrases in English such as “I like _____,” but Aiko rarely voluntarily used English herself. Her first English phrase was when she tried to insult her little brother by calling him a “monkey baby elephant”! I’m afraid we all found that rather cute and not at all insulting! After living with our family for 10 months (the end of May 2011), Aiko was occasionally uttering an English phrase or two and could understand when we told her to do routine things like “brush your teeth” or “stop bothering your brother,” but she could not communicate in any normal way with a native speaker of English. At least, we had never heard her do so. This story contradicts in many ways stories of older children adopted into families who cannot communicate with them in any other way than in English. In those families, the children often begin trying to speak within weeks of their adoption if they are older children, and after a year, they may sound very close to fluent native speakers of English of their own age. However, the big difference between those stories and ours is the context, since we were living in Japan and could communicate in Japanese.

We knew that without additional help and pressure Aiko would never learn to speak English well. So Aiko spent July and August in the United States. During the month of July, Aiko and her older brother and sister went to live with relatives for a month. Those relatives spoke to Aiko in English, but we also heard that Aiko was still not speaking much English back to them. She still had her brother and sister to translate for her. When the rest of the family got to the United States, I
had decided that we would need to insist on Aiko speaking English if she was ever going to gain that skill. So when we arrived at the beginning of August, we began traveling around the U.S. as a family and instituted a rule that we parents would “understand” only English until 3 PM. After that, Aiko could speak to us in Japanese. For the first few days, we didn’t hear much out of her until after 3 PM, when she would talk up a storm. But after just a few days, no more than a week, something seemed to change and she began to speak English. All day long! She was clearly saying everything she could say in English. Our rules were thrown away because we didn’t need them anymore, and Aiko emerged at the end of August as an English speaker, making typical mistakes but forming complex sentences. For example, she said, *Buy this me. My’s is broken* and *Nobody told me that put it onto the genkan* (genkan is a Japanese word meaning the entry hall of the house, and Aiko’s shirt was there). Here’s another utterance I recorded at the end of September: *Why you need that Daddy? I know which one is the small one.*

Upon hearing that Aiko was speaking English, friends in Japan marveled at the speed with which she had picked English up. Certainly the change from someone who could not (or would not) communicate in English was accomplished within the space of at most a month. However, her ability to speak English must have depended on her understanding of English, which was something that gradually improved over the year. Although Aiko progressed from being someone who would not speak in English to someone who seemed to do so at an amazing speed, we would more accurately say it took her about a year to get to the point where she could say the sentences I listed in the previous paragraph.

Although this anecdote is different from the normal one of children learning to speak a second language when they move to live in a different country, such anecdotes are plentiful. I knew a family who adopted an eight-year-old Russian boy and within a few months he seemed able to communicate at a basic level, and after a year, he seemed to speak at nearly the same level as his peers, with an occasional funny collocation thrown in. If you have heard such anecdotes
or seen this process yourself, you may naturally think that children are better language learners than adults. It seems to be "common knowledge" that children's brains are like sponges and that they can absorb languages much better than adults can. Many people are firmly convinced that children are always the best language learners and that they pick up languages rapidly. In fact, most people seem to think that children are better at learning almost anything, because of the plasticity and flexibility of children's brains. It is a common belief that children are born ready to learn, and that this ability fades as we become adults.

There is no doubt that language acquisition in children is a wonderful and awe-inspiring event. As a parent of four children, I have been fascinated to watch (and occasionally record) my children learning language. All of my children are bilingual in both Japanese and English, and this has also been a fun process to watch, albeit one that has taken a lot of hard work and conscious planning to bring to pass. (You can read about my family and others in Barron-Hauwaert, 2010.)

Many linguists teach that human beings are born with an instinct or inborn ability to learn language. Advocates of this position teach that this process will occur regardless of whether parents correct their children's grammar or not, and regardless of the amount or type of input that the children receive. There does seem to be a very natural process in which young children learn their native language in a way that parallels naturally occurring developmental processes in human beings, such as learning to walk or seeing the visual world. However, this chapter provides research to show that some of the most common views of the language acquisition process are incorrect—children do not learn language especially quickly and they are not actually better than adults at learning languages in many contexts. Most adults underestimate their own cognitive abilities and overestimate the abilities of children.
What the Research Says

Speed of First Language Acquisition

First, we should define how long it takes for normal, monolingual children to acquire their first language when they receive input from birth (in other words, the normal situation). A study by Bates, Dale, and Thal (1995) found that the average child understands about 17 words at 8 months of age but doesn’t really begin to produce language until after 12 months of age. An adult who studied a language without producing words for a year would most likely be considered an idiot, but we consider the same behavior by children quite normal.

Of course, a baby’s vocal apparatus may not be finely tuned enough to produce language until after a year of age, so perhaps this is an unfair comparison. Recently a number of studies have been done with older adoptees who are learning a new language at an older age, so this may be a better comparison with adults. A survey by Glennen and Masters (2002) found that children adopted at 13–18 months of age knew an average of 68 words by 22–24 months (4–9 months later) and an average of 111 words by 28–30 months (10–15 months after adoption). It took them until 28 months of age to reliably produce two-word utterances, on average. These children were making good progress given the situation, but again we must ask whether an adult, constantly exposed to a new second language, would have been using more than 111 words and using sentences larger than two words after a year of exposure. It seems clear they would have, and this is due to the advanced cognitive abilities of adults over children (Snedecker, Geren, & Shafto, 2007).

Returning to the situation of children exposed to one language from birth, a majority of children won’t begin to produce word combinations (such as me go) until nearly 21 months of age, and Bates, Dale, and Thal (1995) link this occurrence to the presence of larger vocabularies (when children are producing 50–200 words). Still, sentences don’t begin to get complex until children have about 400 words in their productive vocabularies, and children have not finished their
acquisition of basic English grammar until around age 4 (Hudson, 2000). Obviously language is a skill that can be acquired by a child while other activities are taking place, but if we consider the finding that it takes adults 10,000 hours to acquire a skill to the level of expert (Ericsson & Charness, 1994; Ward, Hodges, Williams, & Starkes, 2004) the child is lagging behind if he or she requires 17,520 hours of input and interaction (my conservative estimate, assuming the child is awake 12 hours a day, multiplied by 365 days in a year, multiplied by four years) in order to become a proficient speaker of a language. It is clear that monolingual children do not really learn their first language very rapidly. They are slow learners but become quite skilled by the end of the process.

Speed of Second Language Acquisition by Children

The older the child, the faster his or her progress seems to become in the second language, although of course the child has farther to go to catch up. A case study of a seven-year-old Polish boy who moved to the U.S. with no prior English experience detailed his rapid gains of proficiency (Winitz, Gillespie and Starcev, 1995). This boy, AO, could use single words such as grass and flowers and could say things such as no, good day, and I English [indicating that he was doing his English lessons] after a month and a half. By three months, the authors state that he “was gaining a mastery of pronouns, some prepositions, and a few verbs” (1995, 133) but that his range of expression was still extremely limited, with some phrases such as I today school and We play; just a minute noted. His understanding of English was close to that of a two-year-old monolingual English speaker. However, by one year of residence, AO could create full sentences such as Tammy, can I have your cake? and I do not. Yesterday I didn’t get my strike on the board [in his school, if you did something bad, you got a mark on the board called a strike].

One study of young children adopted from China illustrates the faster progress of older children in English, their “second first language.” Snedecker, Geren, and Shafto (2007) tracked the progress over
18 months of children adopted at ages 2–5. The study found that the children's vocabulary acquisition was faster than monolingual infants, at roughly four times the rate of infants. Interestingly though, they also found that the children progressed through the same stages of vocabulary acquisition as monolingual children by acquiring more nouns than verbs at first and then by not producing two-word phrases until their vocabulary was over the 300-word level.

One reason why so many people believe children acquire language much more rapidly than adults may be because the language we expect from a child and an adult are so different. Collier (1989, 513) says, "Children's SLA [second language acquisition] appears superior largely because the structures and vocabulary they need for adequate communication are so much simpler than those required of adults." When the reader considers the rapid language progress of someone like my daughter, Aiko, they are likely thinking of the child's ability to communicate in normal conversation—a different type of language ability than the kind needed to do well in school. In fact, several studies that have compared how quickly children and adults acquire the same language have shown that older adolescents or adults performed better and faster than the younger children.

Cummins (1979, 1980, 1981a, 1981b) made a distinction between what can be thought of as normal conversational fluency (called Basic Interpersonal Communication Skills, or BICS) and the language that is used in school and other academic contexts (called Cognitive Academic Language Proficiency, or CALP).

Generally, studies have shown that it takes children much longer to master the academic skills (CALP) than it does the normal conversational skills (BICS). Hakuta, Butler, and Witt (2000) found that it took Spanish-speaking children in California beginning their study of English in first grade three to five years to develop oral proficiency equal to their monolingual peers, and four to seven years to develop academic English proficiency. Cummins (1981b) found that it took children who had never attended school in their first language at least five to seven years to become equal to their monolingual peers in academic achievement (CALP).
Speed of Second Language Acquisition by Adults

In order to make any sort of meaningful comparison between the speed of young children who are learning a second language and adults who also do so, we would need to look at adults who are getting massive exposure every day to a language. One situation this occurs in is in the U.S. foreign service, when adults are expected to learn new languages in order to function in the countries they will be assigned to work in. The government provides intensive language training for such language learners. With languages that are typically easiest for native English speakers to learn, such as Spanish, Dutch, or French, after 24 weeks (or 720 hours in a six-hours-a-day, five-day-a-week program), motivated adults with normal levels of language aptitude reached a level of 2+ (Advanced High) (Omaggio-Hadley, 2000). This level is defined by the ability to connect speech into paragraph-like narratives and explanations and to speak with a wide vocabulary on many concrete topics. The learners speak fluently, and their grammar is consistently accurate. This level excludes the ability to discuss abstract concepts or hypothesize about topics.

For the more difficult languages for native English speakers to learn (Arabic, Chinese, Japanese, or Korean) about 80–92 weeks would be required (that’s 2,400–2,760 hours of classroom study).

Perhaps a context that provides an even better comparison than foreign service employees is the case of missionaries who are learning a foreign language while living in the country. This population may contain a more representative slice of a normal population than foreign service employees, whose job it is to learn foreign languages and who likely have above-normal levels of language learning aptitude. The missionaries are normal language learners, but the amount of input they get is quite substantial since they are immersed in the language. We might expect their language learning would not happen as quickly as the foreign service employees and that there would be more variation in their outcomes.

Several recent studies have been done with missionaries of the Church of Jesus Christ of Latter-Day Saints (the Mormons), who vol-
unteer to spend two years being missionaries when they are in their early twenties. Conservative estimates from these studies are that the missionaries spend 40 hours per week engaged in activities during which they are exposed to the Japanese language (either as input or output). Given that the missionaries spend 24 months (for men) or 18 months (for women) on a mission, at 40 hours per week this translates into a total of 4,160 hours of input (or 3,120 for women). This is substantially more time than what the foreign service guidelines give, but the missionaries do not typically represent an extraordinarily linguistically gifted portion of the population either.

Dewey and Clifford (2012) explored the language level of missionaries who had learned Spanish, French, German, Italian, Russian, Mandarin, or Japanese after their mission. They found that only 7 percent of the missionaries achieved a ranking lower than Advanced (2-, 2, or 2+), with the majority of this 7 percent coming from missionaries learning Russian, Mandarin, or Japanese. Eighty percent of the returned missionaries reached the 2 or 2+ level (Advanced Mid or Advanced High), with an additional 6 percent more reaching the level of a 3 (Superior speaker, who can talk about abstract ideas, hypothesize, and support opinions). Table 1 gives the distribution of missionaries into their oral proficiency levels after the completion of their mission (reproduced from Dewey and Clifford, Table 2).

TABLE 1: Scores on Oral Proficiency Test by Returned Missionaries (percentages from 391 participants)

<table>
<thead>
<tr>
<th></th>
<th>Spanish</th>
<th>French</th>
<th>German</th>
<th>Italian</th>
<th>Russian</th>
<th>Mandarin</th>
<th>Japanese</th>
<th>All Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8%</td>
<td>15%</td>
<td>0%</td>
<td>14%</td>
<td>4%</td>
<td>4%</td>
<td>0%</td>
<td>6%</td>
</tr>
<tr>
<td>2+</td>
<td>31%</td>
<td>40%</td>
<td>35%</td>
<td>57%</td>
<td>25%</td>
<td>21%</td>
<td>14%</td>
<td>29%</td>
</tr>
<tr>
<td>2</td>
<td>53%</td>
<td>40%</td>
<td>40%</td>
<td>29%</td>
<td>56%</td>
<td>42%</td>
<td>38%</td>
<td>51%</td>
</tr>
<tr>
<td>2−</td>
<td>5%</td>
<td>5%</td>
<td>25%</td>
<td>0%</td>
<td>11%</td>
<td>8%</td>
<td>0%</td>
<td>7%</td>
</tr>
<tr>
<td>1+</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td>25%</td>
<td>43%</td>
<td>6%</td>
</tr>
<tr>
<td>1</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>1−</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

In short, by being exposed to a second language in a naturalistic context, most adults were able to become quite fluent and proficient speakers after 18–24 months.

Larson-Hall and Dewey (2012) surveyed missionaries’ speaking proficiency as well as testing missionaries who were still living in country. This was done to observe what impact time would have on proficiency level. This study showed that participants with less than 11 months of missionary service were still improving in their oral proficiency, and for these participants time on mission explained about 80 percent of their oral proficiency scores. For missionaries after a year of in-country immersion, the relationship between time spent on the mission and oral proficiency score dramatically decreased, explaining only about 25 percent of their scores. This indicates that it takes the missionaries roughly one year of intensive study and exposure to Japanese to reach the Intermediate High (1+) or Advanced (2) level. A graph showing what proficiency levels were achieved by the participants at the time they were tested is shown in Figure 1 (reprinted from Larson-Hall and Dewey, Figure 3).

What Graphs Tell Us

If you have a series of numbers, such as (3, 5, 6, 7), you can calculate the average of these numbers by adding them up and dividing by the number of items—here it will be (3+5+6+7)/4=5.25. The average represents the number that is most representative of all the numbers. It is also a number where the difference between each item in the list and the average is the smallest. In the same ways, a regression line takes all of the data in a scatterplot and draws a line that best represents the two-dimensional data. It is the line where the distance from the line to each point will be the smallest. Because it can be extended beyond the actual data points, it can predict where data will fall in areas where there is no data available (in other words, it can extrapolate from the data). A regression line assumes that the best way to represent the data is a straight line, though, and this may not always be the best assumption. Therefore, another useful piece of information on a scatterplot is a Loess line, which draws a line between successive points, but in a smooth way. In Figure 1 it appears that a straight line (the regression line, or broken line in Figure 1) is not the best representation of the data. Instead, there seem to be two different patterns, one steeply improving up until about 11 months, and the other showing only gradual improvement after 11 months.
FIGURE 1: Relationship between Time Spent on Mission and Proficiency Level on the Oral Proficiency Test

2=Novice (0), 3=Novice High (0+), 4=Intermediate Low (1−), 5=Intermediate Mid (1), 6=Intermediate High (1+), 7= Advanced (2), 8=Advanced High (2+), 9=Superior (3) (note that there is no Advanced Low level in this rating scale). The unbroken line is called a Loess line. It follows the trend of the data and shows a leveling out around 11 months. The broken line shows regression line (see the box on page 10 for more information).

You may be an adult who spent many hours taking language classes in high school or college but never got to the point where you could speak the language well enough to communicate with native speakers. You may look at children who seem to quickly acquire a second language after moving to a different country where they receive large amounts of exposure and thus conclude that children are better language learners than adults. However, the studies cited on foreign service employees and missionaries show that if adults are also immersed in a situation where they are receiving massive amounts of input in the second language and are also forced to speak and express themselves in that language, they too are able to reach quite good levels of speaking proficiency within a relatively short amount of time (about a year). We may therefore question whether children are faster or better language learners than adults who have the time available to devote to full-time language acquisition.

Ultimate Attainment in a Second Language

But are children better learners in the long run than adults? The answer here is a clear yes, given some certain circumstances. If we are discussing ultimate attainment after 5–10 years where both the child and adult live in the country where the target language is spoken, then clearly the outcomes for children surpass those of adults. In this type of immersion experience, where we assume that the language learner in question is interacting and having to use the target language to communicate, children will end up with skills that more closely resemble native speakers than adults will.

Figure 2, taken from the largest critical period study conducted to date (Flege, Yeni-Komshian, & Liu, 1999), shows the basic trends on tests of simple grammar that ask participants to say whether a sentence like *My mom like pepperoni on her pizza* is grammatical. Results show fairly high scores until after about age 12.
FIGURE 2: Scores on a Grammar Test for 24 Native Speakers of English and 240 Korean Learners of English as a Second Language

The line is a fit line to the data (similar to the Loess line, explained in Box on page 10).

Reprinted from Journal of Memory and Language, 41, Flege, J. E., Yeni-Komshian, G. & Liu, S., Age constraints on second-language acquisition, 78–104. Copyright (1999), with permission from Elsevier.

Figure 2 shows that the variability in scores on the test increases with age. The white circles are the scores of native English speakers on the test, who all received scores of between 90–100 percent correct. The line that is fit to the data (showing the trend of the direction the points are moving, either up or down) in this figure begins to curve downward after age 5–6 but scores do not routinely go below 80 percent until age 12 and older. After age 12 there seem to be some participants who can still score well (there are scores in the 90s for all age groups), but the range of variation becomes much wider than was seen before this age.

Figure 2 shows that it is not impossible for people who start at an older age to learn the basic grammar of a language well; it just becomes less likely as the starting age increases. Also, there is no real clear
demarcation line where everyone who starts before a certain age will perform like a native speaker of a language. Instead, there is a general decrease in ultimate outcomes as the language learners move beyond age 5 or 6.

The situation for nativelike acquisition of pronunciation is different from that of grammar. The ability to sound like a native speaker is lost earlier than the ability to do well on the grammar test. Figure 3 shows results on a test of pronunciation from the same group of Korean learners of English as was seen in Figure 2.

FIGURE 3: Foreign Accent Ratings for 24 Native Speakers of English and 240 Korean Learners of English as a Second Language

The highest accent rating of 9 means the person is rated as a native speaker of English with no accent, while the score of 1 means having a very strong foreign accent. The unbroken line is a fit line to the data.

Reprinted from *Journal of Memory and Language*, 41, Flege, J. E., Yeni-Komshian, G. & Liu, S., Age constraints on second-language acquisition, 78–104, Copyright (1999), with permission from Elsevier.
Figure 3 shows that even the earliest English starters do not seem to score, as a group, as well as the native speakers (again, in the white circles). The decline in overall pronunciation levels is gradual, but by age 14 only the rare participant can score over 5, and most score well below that.

The research has established, then, that in a context with massive amounts of exposure to a language, children will generally end up with more nativelike abilities in a language than adults. However, this result does not mean that in all types of situations children will be better language learners than adults. For example, in many parts of the world, young children attend English language classes as an enrichment activity an hour a week, similar to piano lessons or a chess club. There is no research to show that children will learn English well in such an input-poor environment. In fact, there is every reason to think that adults’ advanced cognitive abilities would put them at an advantage for learning a language in such a situation, although it would be difficult for anyone to learn a language well with just an hour of input a week.

Learning in Children versus Adults

The fact that children are more accurate language learners in the long run with large amounts of input has caused some researchers to posit that there is a critical period for learning a language. If there is a biologically determined time when learning a language results in better outcomes for humans (a critical period), then there must be a biological mechanism for this difference. Many researchers have assumed that the biological reason for the difference in ultimate language outcomes was that children’s brains are still pliable and plastic while adults’ brains have hardened and cannot change. This is commonly reflected in the phrase “children’s brains are like sponges” that accompanies the idea that children are able to learn information much more quickly than adults and without any effort. In fact, as shown in this chapter, children do not acquire a language more quickly than adults and that with lots of time to devote to language acquisition, adults can learn a
second language to a high level of proficiency in the same amount of time it takes a baby to learn its first 20 words.

Current brain research is showing that adults’ brains are still malleable and can physically change in response to input. Macguire et al. (2000) studied the brains of London taxi drivers who memorize voluminous amounts of spatial information in order to navigate the city. This study found that the size of the hippocampus, where spatial information is stored, was substantially larger in these taxi drivers than in the normal population. Since the drivers presumably learned this information about the roadways of London as adults, we can conclude that adults’ brains are plastic enough to grow and change in even radical ways in response to information and experience.

Another study (Kwok et al., 2011) found that adults’ brains can change so quickly in response to learning that in a matter of only two hours of practice associating Mandarin color words with the colors themselves, adults had developed additional gray matter in an area of the cortex associated with learning and memory.

One study done with young and old rats showed that the results of exposure to a new environment result in actual physical growth of areas in the brain, but of different types depending on the age of the rat. Briefly, if the rats were young, then structures in the brain increased in number but not density, while if the rats were older, the structures got longer and denser. If we are justified in translating this research to the human brain, it is clearly not accurate to say that children’s brains are ready to learn while adults’ brains have hardened—it appears that our brains are set up to learn and grow at any age, although there may be different kinds of growth when the exposure occurs at different ages.
What We Can Do

1. In the classroom, consider what adults and children bring to the table.

Adults bring life experience and a lot of experience with language to the classroom. They are able to learn explicitly, using rules. Children, conversely, are still adding to their native language ability, and they probably learn best implicitly—picking up examples, storing them, and eventually sorting them out to form their own rules. We need to keep in mind the differences and play to the respective strengths of each group.

This is not to say that adults can’t learn implicitly, but adult students may be in a hurry to learn, and rules (and strategy use) might facilitate learning for them. Younger children are not ready for rules and meta-linguistic discussions.

2. Encourage adults to learn languages.

One of the major points is that adults can learn languages. Although children may do better in the long run, adults can become functionally proficient in speaking a language at least as quickly as children if both receive large amounts of input. Adults should not feel that they are handicapped by brains that cannot change and learn as quickly or as well as children. Although adults and children may learn in different ways, both have brains that will change and grow in response to enrichment. If adults want to learn a language, like any other skill, their brains are ready and capable of doing so.

3. Set realistic expectations for how long it can take for adults to reach an intermediate speaking level.

One of the problems with adults learning languages in formal settings such as university classes is that they usually do not receive enough input to really progress very far. Information provided in this chapter
shows that many hundreds of hours of input and practice are needed to learn to speak and comprehend (not to mention read and write!) a second language, whether the learner in question is a child or an adult.

Teachers must be realistic in their expectations of what students can achieve when they spend only a limited amount of time learning a language. If teachers expect students to make much progress in learning a language, they will need to provide outlets where they can really improve in the amount of time they spend learning a language. In a university setting, for example, intensive language classes in the summer might fulfill a language requirement better than having students study a language for only a few hours a week the rest of the year. If increased input is not feasible, language teachers should make sure to have very specific and focused goals that can actually be accomplished in the limited time available. They should remind students that it takes at least 1,000 hours to become an intermediate speaker of almost any language. Students should not feel like they are failures when they take a language class and are not really able to communicate with native speakers of that language.

4. Set realistic expectations for how long it takes children to learn a language.

The idea that children are faster learners than adults is not accurate. In general, the older the learner, the faster he or she can acquire a language, although the results may not be as good in the long run. Teachers who expect that children can acquire a language more quickly and more easily than adults may handicap them in some cases. For example, if the general public feels that children immersed in a second language environment will be proficient users of that language in only a year, they may be unwilling to fund school programs that continue to help L2 learners progress. In 1998, a referendum passed in California that cut off funding for bilingual education and replaced it with just one year of language immersion classes. L2 learners may become quite good at speaking conversationally in one year of immersion, but it is
virtually impossible for them to reach the academic level of their peers after just one year of language learning assistance.

Consider how well adults would do if placed in an immersion environment and only given one year of help. We can guess that they would ask for help for longer than a year. It is likely only because many adults think that children are so different from themselves and so much better at learning languages that they are willing to withdraw help so quickly. If everyone understood better the amount of time it takes to learn a language well—whether children or adults—more programs would be in place to provide support to second language learners. The belief that children will acquire a language easily, quickly, and without any effort does child language learners a disservice.

5. Schools that teach second languages should provide a high number of contact hours.

Children who take language classes that provide a very minimal number of contact hours a week (usually in the range of 1–3 hours) are not common in the U.S., but they are common in many other countries such as Japan, Korea, and China. The common belief that children are always better language learners no matter the circumstances may lead some people to spend quite a bit of money on such classes (currently, in Japan, my son’s pre-school sends home fliers for such 30-minute weekly English lessons that cost $85 a month). If a child is interested in learning a language and enjoys spending time in their week to play and enjoy the environment of a language class, there is no harm in this. However, if parents find they are paying large amounts of money for one or two hours of language instruction per week in the misguided belief that this is the best time to learn a language, they are wasting their money. It would also be a mistake to spend a lot of time teaching children grammar rules or trying to help them see patterns when they are too young to learn this way efficiently.

Of course, this conclusion does not just apply to parents. School districts and even whole countries have made decisions about teaching languages in primary schools (especially English, which is a language
of wider communication). While teaching English to young children in a situation where there is minimal input should not hurt anyone, policymakers may mistakenly think that even one or two hours of English a month will be a valuable addition to childrens' education. In other words, the belief that children will always be the best language learners may lead to large-scale policy implications that are based on a flawed premise.