Forecasting Enterprise Data At Machine Scale

Pierre Elisseeff
Boulder Startup Week
May 2019

NODIN

All rights reserved worldwide. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language in any form or by any means without the express written permission of Nodin, Inc.
Enterprise data is often messy, with complex dynamics at play

Traditional approaches to time series forecasting are usually unreliable

Auto ARIMA
Exponential Smoothing
Seasonal Naive
TBATS

Graphs combined with non-parametric additive regressive forecasting provide a scalable, robust approach.

Leaf node forecast generated using PROPHET.
Non-Parametric Additive Regressive Modeling with Prophet

Four Main Components

• Piecewise linear or logistic growth curve trend
 – Prophet automatically detects changes in trends by selecting changepoints from the data
• Yearly seasonal component modeled using Fourier series
• Weekly seasonal component using dummy variables
• User-provided list of events

Key Benefits

• MAP optimization for parameters performed in Stan
 – Speed, enables Hamiltonian Monte Carlo
• Use of regressors is very flexible and not limited to various seasonality factors, can add other independent variables
• Can repurpose for impact of discrete events

A Hybrid Graph-Based Prophet Approach Provides a Significantly Better Forecast Scalable Across The Enterprise

Metric 1

- **Legacy**
- **Nodin**

Metric 2

- **Legacy**
- **Nodin**

Metric 3

- **Legacy**
- **Nodin**
Technology Stack

- Python
- Prophet
- ArangoDB
- Google Cloud
- Scikit Learn

Copyright © Nodin, Inc. All Rights Reserved. Patents Pending.
Resources

Prophet: https://facebook.github.io/prophet/

Forecasting At Scale: https://peerj.com/preprints/3190/

PyStan: https://github.com/stan-dev/pystan
Thank You

www.nodin.ai