A Case Study of a Flood Producing Heavy Rainfall Events in Malaysia

Liew Ju Neng
Centre for Earth Sciences and Environment
Universiti Kebangsaan Malaysia
Introduction

- Most high-profile flood producing *extreme rainfall events* in Malaysia can be associated to *synoptic circulation* modulated by *large scale climatic signals* (e.g. ENSO, IOD, MJO).

- It is crucial to understand the underlying processes:
 - What are the roles of *large scale* and *local forcings*?
 - How does the *warmer climate* alter the probabilities of these events?
 - Has local changes *augmented the severity* of the extremes
 - etc.

- Need *more test cases*.

- In previous meeting, we have reported a case study of the extreme rainfall event on *17 December 2014* based on *WRF simulation*.
Maximum intensification of rainfall could be seen between 0900UTC and 1200UTC.

FIGURE. Rain rate (mm/hr) on 17 December 2014 from radar observation. (source: Malaysian Meteorological Department).
Numerical Experiments

- Using WRF Version 3.7.1
- Integrated over 36 hours, beginning from 16 Dec 2014, 1200 UTC until 18 Dec 2014, 0000 UTC
- Initial and boundary data:
 - GDAS 0.5°
 - 6-hour interval.
- 3 nested domains (36 km, 12 km and 4 km)
- Two-way nested run
- 30 vertical levels.
- Physics options:
 - WRF Single-Moment 3-class scheme for microphysics,
 - RRTM scheme and Dudhia scheme for atmospheric radiation,
 - 5-layer thermal diffusion for land surface
 - Yonsei University scheme for planetary boundary layer.
 - Different combination of cumulus parameterization schemes (Table 1) were used at different domains and the simulation result were examined.

FIGURE. Three nested domains configuration of the WRF simulation.
Numerical Experiments

TABLE 1. Different combination of cumulus parameterization schemes.

<table>
<thead>
<tr>
<th>Exp</th>
<th>Parameterization schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domain 1</td>
</tr>
<tr>
<td>1</td>
<td>Kain-Fritsch</td>
</tr>
<tr>
<td>2</td>
<td>Kain-Fritsch</td>
</tr>
<tr>
<td>3</td>
<td>BMJ</td>
</tr>
<tr>
<td>4</td>
<td>BMJ</td>
</tr>
<tr>
<td>5</td>
<td>Multiscale KF</td>
</tr>
<tr>
<td>6</td>
<td>Multiscale KF</td>
</tr>
<tr>
<td>7</td>
<td>NSAS</td>
</tr>
<tr>
<td>8</td>
<td>NSAS</td>
</tr>
<tr>
<td>9</td>
<td>New Tiedtke</td>
</tr>
<tr>
<td>10</td>
<td>New Tiedtke</td>
</tr>
</tbody>
</table>
RESULT AND DISCUSSION (CPS)

The TRMM accumulated 24-hour rainfall (mm), (b) WRF simulation on 17 December 2014.

- The event simulation (intensity and location) is very sensitive to deep convection parameterizations.
- Kain-Fritsch scheme for outer domains and no cumulus scheme used at the inner most domain produces the best result.
• More test cases are needed for us to understand various extreme rainfall producing mechanism at different part of Malaysia.

• For the DMCC+ and UND project case study, we plan to add another recent extreme rainfall case occurred along the northern west coast of Peninsular Malaysia on 4-5th November 2017.

• Following slides provide an overview of the event.
Case Study 2: Northwestern Peninsular Malaysia, 4-5 Nov 2017

Timing: 4-5 Nov 2017
Evacuated >10000 people
Death toll: 7 death
Cost of damage >RM 300mil
November is typically a wet season in the northwestern part of Peninsular Malaysia.
Synoptic Overview

Wind circulation from 2-7 November 2017
00Z02NOV2017
Accumulated Rainfall from IMERG multi-satellite product

- Generally, 3 rainfall systems.
- Accumulated rainfall from GPM is rather low over northwestern Peninsular.
Rainfall Analysis by MMD

Radar Observation (mm/hr) at Sat Nov 4 14:30:00 2017

Radar Observation (mm/hr) at Sat Nov 4 21:40:00 2017

Radar Observation (mm/hr) at Sat Nov 4 23:50:00 2017

Radar Observation (mm/hr) at Sun Nov 5 06:00:00 2017
• 4th – Consistently larger rainfall over the northern part.
• Station Bangan Buaya (south) recorded largest rainfall (>450 mm daily rainfall).
The stations recorded rainfall

- First look at the hourly rainfall of all the stations.
- The rainfall episode lasted about a day from the noon of 4th to morning 5th November 2017.
- The episode has 2 distinctive rainfall peaks, one at the night of 4th and the other during the morning of 5th.
- The largest recorded hourly rainfall > 100mm/hr at Bagan Buaya.
- During the episode, most of the stations has recorded hourly rain rate of 20-30 mm/hr.
Comparing Satellite Data to Station records

- Satellite product is in grids and the values are representation of the grid averaged. Comparing the gridded product and the station scale record is difficult.
- However, generally the satellite data under-estimated the rainfall amount. Generally it gives only 30-40% of those recorded at the stations (>200mm on 4th November 2017).
- Nevertheless, the spatial variations suggested that the rainfall is larger over the northern region.
How was the weather forecast performs during the event

• GFS forecast initialized on the 00 UTC 3 November was examined.
• Given the coarse resolution the GFS was not able to forecast the location of the heavy rainfall correctly.
• However, it did forecasted the occurrence of heavy rainfall over the region despite much lower intensity compare to the station records.
• For 4th and 5th November daily rainfall, the centre of forecasted rainfall appeared slightly northward and southward respectively.
• Figure above shows general comparison between station rainfall, satellite products as well as the GFS forecast over the Penang areas.
• Generally both satellite and GFS forecast underestimate the station records, despite they consistently picked up the double peaks characteristics of the heavy rainfall episode.
Data collection

• Collected
 - 15 mins rainfall rate from 30 stations.
 - Radar images (CAPPI)
 - satellite data (IMERGE/GsMAP)

• In process of collection
 - Raw radar data
 - Land use?
Numerical Experiment (current status)

Nested Domain for D1 – 27km, D2 – 9km, D3 – 3km, D4 – 1km
WRF Configuration

- Initial and Boundary Conditions: ERA INTERIM
- Physics for Domain 3 & 4
 - **Cumulus Option** – No Cumulus Parameterization
 - **Microphysics Option** – WRF Single-Moment (WSM) 3-class simple ice scheme
 - **Surface Layer Option** - Monin-Obukhov Similarity scheme
 - **Land Surface Option** - Thermal Diffusion scheme
 - **Shortwave Radiation Option** - Dudhia scheme
 - **Longwave Radiation Option** – RRTM scheme: Rapid Radiative Transfer Model.
 - **Boundary Layer Option** – YSU Scheme
12 hour rainfall for Domain 3

4NOV2017_8am – 4NOV2017_8pm

4NOV2017_8pm – 5NOV2017_8am

5NOV2017_8am – 4NOV2017_8pm
12 hour rainfall for Domain 4
Remarks

• Still experimenting for the best model configuration.
• Questions of interest which require further analysis:
 • How is the quality of the simulations affected by model resolutions and moisture schemes?
 • How is the local topography influence the rainfall intensity?
 • Where does the system obtain its moisture from?
 • How does the Typhoon Damrey affected the events?
Increase of interannual variability

- Northern part of Peninsular Malaysia and Sabah has experienced an increase in interannual variability.
- In certain areas, the interannual variability has doubled.
- Accurate forecast of different time-scales is expected to become more crucial for disaster mitigation purposes.
The End