What is perfSONAR?

APAN 48 – Putrajaya, Malaysia - Meshbuilder Workshop

Scott Chevalier, IN@IU, schevali@iu.edu
Hans Addleman, IN@IU, addlema@iu.edu

This document is a result of work by the perfSONAR Project (http://www.perfsonar.net) and is licensed under CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/).
Outline

• Problem Statement on Network Connectivity
• Supporting Scientific Users
• Network Performance & TCP Behaviors w/ Packet Loss
• What is perfSONAR
• Deployment Overview
• Conclusions
Problem Statement

• The global Research & Education network ecosystem is comprised of hundreds of international, national, regional and local-scale networks.
Problem Statement

• While these networks all interconnect, each network is owned and operated by separate organizations (called “domains”) with different policies, customers, funding models, hardware, bandwidth and configurations.
The R&E Community

- The global Research & Education network ecosystem is comprised of hundreds of international, national, regional and local-scale resources – each independently owned and operated.

- This complex, heterogeneous set of networks **must** operate seamlessly from “end to end” to support science and research collaborations that are distributed globally.

- Data mobility is required; there is no liquid market for HPC resources (people use what they can get – DOE, XSEDE, NOAA, etc. etc.)
 - To stay competitive, we must learn the use patterns, and support them
 - This may mean making sure your network, and the networks of others, are functional
Outline
• Problem Statement on Network Connectivity
• Supporting Scientific Users
• Network Performance & TCP Behaviors w/ Packet Loss
• What is perfSONAR
• Deployment Overview
• Conclusions
Understanding Data Trends

http://www.es.net/science-engagement/science-requirements-reviews/
Sample Data Transfer Rates

<table>
<thead>
<tr>
<th>Data set size</th>
<th>1 Minute</th>
<th>5 Minutes</th>
<th>20 Minutes</th>
<th>1 Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,333.33 Tb/s</td>
<td>1,333.33 Tb/s</td>
<td>266.67 Tb/s</td>
<td>66.67 Tb/s</td>
<td>22.22 Tb/s</td>
</tr>
<tr>
<td>133.33 Tb/s</td>
<td>133.33 Tb/s</td>
<td>266.67 Tb/s</td>
<td>66.67 Tb/s</td>
<td>22.22 Tb/s</td>
</tr>
<tr>
<td>13.33 Tb/s</td>
<td>13.33 Tb/s</td>
<td>266.67 Gbps</td>
<td>66.67 Gbps</td>
<td>22.22 Gbps</td>
</tr>
<tr>
<td>1.33 Tb/s</td>
<td>1.33 Tb/s</td>
<td>266.67 Gbps</td>
<td>66.67 Gbps</td>
<td>22.22 Gbps</td>
</tr>
<tr>
<td>133.33 Gbps</td>
<td>133.33 Gbps</td>
<td>26.67 Gbps</td>
<td>6.67 Gbps</td>
<td>2.22 Gbps</td>
</tr>
<tr>
<td>13.33 Gbps</td>
<td>13.33 Gbps</td>
<td>26.67 Gbps</td>
<td>6.67 Gbps</td>
<td>2.22 Gbps</td>
</tr>
<tr>
<td>1.33 Gbps</td>
<td>1.33 Gbps</td>
<td>26.67 Mbps</td>
<td>6.67 Mbps</td>
<td>2.22 Mbps</td>
</tr>
<tr>
<td>133.33 Mbps</td>
<td>133.33 Mbps</td>
<td>2.67 Mbps</td>
<td>0.67 Mbps</td>
<td>0.22 Mbps</td>
</tr>
<tr>
<td>13.33 Mbps</td>
<td>13.33 Mbps</td>
<td>2.67 Mbps</td>
<td>0.67 Mbps</td>
<td>0.22 Mbps</td>
</tr>
</tbody>
</table>

This table available at:

http://fasterdata.es.net/home/requirements-and-expectations
Challenges to Network Adoption

• Causes of performance issues are complicated for users.
• Lack of communication and collaboration between the CIO’s office and researchers on campus.
• Lack of IT expertise within a science collaboration or experimental facility.
• User’s performance expectations are low (“The network is too slow”, “I tried it and it didn’t work”).
• Cultural change is hard (“we’ve always shipped disks!”).
• Scientists want to do science not IT support.
Outline

• Problem Statement on Network Connectivity
• Supporting Scientific Users
• Network Performance & TCP Behaviors w/ Packet Loss
• What is perfSONAR
• Deployment Overview
• Conclusions
The image contains text discussing the importance of performance in large systems, with a quote by Jon Postel: "In any large system, there is always something broken." The text highlights that modern networks are designed to be one-size-fits-most, often referred to as "converged network" design, which facilitates CIA (Confidentiality, Integrity, Availability). The main points include:

- It’s all TCP
 - Bulk data movement is a common thread (move the data from the microscope, to the storage, to the processing, to the people – and they are all sitting in different facilities)
 - This fails when TCP suffers due to path problems (ANYWHERE in the path)
 - It’s easier to work with TCP than to fix it (20+ years of trying...)

- TCP suffers the most from unpredictability; Packet loss/delays are the enemy
 - Small buffers on the network gear and hosts
 - Incorrect application choice
 - Packet disruption caused by overzealous security
 - Congestion from herds of mice

- It all starts with knowing your users, and knowing your network
Where Are The Problems?

- Congested or faulty links between domains
- Latency dependant problems inside domains with small RTT
- Congested intra-campus links

Source Campus

Backbone

Destination Campus

NREN

Regional
Local Testing Will Not Find Everything

Performance is poor when RTT exceeds ~10 ms

Performance is good when RTT is < ~10 ms

Switch with small buffers

9 August 2019

Soft Failures Cause Packet Loss and Degraded TCP Performance

Throughput vs. Increasing Latency with .0046% Packet Loss

- Local (LAN)
- Metro Area
- Regional
- Continental
- International

With loss, high performance beyond metro distances is essentially impossible

Measured (TCP Reno) Measured (HTCP) Theoretical (TCP Reno) Measured (no loss)
Soft Network Failures

- Soft failures are where basic connectivity functions, but high performance is not possible.
- TCP was intentionally designed to hide all transmission errors from the user:
 - “As long as the TCPs continue to function properly and the internet system does not become completely partitioned, no transmission errors will affect the users.” (From IEN 129, RFC 716)
- Some soft failures only affect high bandwidth long RTT flows.
- Hard failures are easy to detect & fix
 - soft failures can lie hidden for years!
- One network problem can often mask others
Problem Statement: Hard vs. Soft Failures

• “Hard failures” are the kind of problems every organization understands
 • Fiber cut
 • Power failure takes down routers
 • Hardware ceases to function

• Classic monitoring systems are good at alerting hard failures
 • i.e., NOC sees something turn red on their screen
 • Engineers paged by monitoring systems

• “Soft failures” are different and often go undetected
 • Basic connectivity (ping, traceroute, web pages, email) works
 • Performance is just poor

• How much should we care about soft failures?

Causes of Packet Loss

• Network Congestion
 • Easy to confirm via SNMP, easy to fix with $$$
 • This is not a ‘soft failure’, but just a network capacity issue
 • Often people assume congestion is the issue when in fact it is not.
• Under-buffered switch dropping packets
 • Hard to confirm
• Under-powered firewall dropping packets
 • Hard to confirm
• Dirty fibers or connectors, failing optics/light levels
 • Sometimes easy to confirm by looking at error counters in the routers
• Overloaded or slow receive host dropping packets
 • Easy to confirm by looking at CPU load on the host
Under-buffered Switches are probably our biggest problem today
The Science DMZ in 1 Slide

• Network Congestion
 • Easy to confirm via SNMP, easy to fix with $\$
 • This is not a ‘soft failure’, but just a network capacity issue
 • Often people assume congestion is the issue when it fact it is not.

• Under-buffered switch dropping packets
 • Hard to confirm

• Under-powered firewall dropping packets
 • Hard to confirm

• Dirty fibers or connectors, failing optics/light levels
 • Sometimes easy to confirm by looking at error counters in the routers

• Overloaded or slow receive host dropping packets
 • Easy to confirm by looking at CPU load on the host
The Abstract Science DMZ

Border Router

Enterprise Border Router/Firewall

Site/Campus access to Science DMZ resources

Science DMZ Switch/Router

Per-service security policy control points

High performance Data Transfer Node with high-speed storage

WAN

High Latency WAN Path

Low Latency LAN Path
Outline

• Problem Statement on Network Connectivity
• Supporting Scientific Users
• Network Performance & TCP Behaviors w/ Packet Loss
• What is perfSONAR
• Deployment Overview
• Conclusions
But ... It’s Not Just the Network

• Perhaps you are saying to yourself “I have no control over parts of my campus, let alone the 5 networks that sit between me and my collaborators”
 • Significant gains are possible in isolated areas of the OSI Stack

• Things “you” control:
 • Choice of data movement applications (say no to SCP and RSYNC)
 • Configuration of local gear (hosts, network devices)
 • Placement and configuration of diagnostic tools, e.g. perfSONAR
 • Use of the diagnostic tools

• Things that need some help:
 • Configuration of remote gear
 • Addressing issues when the diagnostic tools alarm
 • Getting someone to “care”
Network Monitoring

• All networks do some form monitoring.
 • Addresses needs of local staff for understanding state of the network
 • Would this information be useful to external users?
 • Can these tools function on a multi-domain basis?

• Beyond passive methods, there are active tools.
 • E.g. often we want a ‘throughput’ number. Can we automate that idea?
 • Wouldn’t it be nice to get some sort of plot of performance over the course of a day? Week? Year? Multiple endpoints?

• perfSONAR = Measurement Middleware
perfSONAR

- All the previous Science DMZ network diagrams have little perfSONAR boxes everywhere
 - The reason for this is that consistent behavior requires correctness
 - Correctness requires the ability to find and fix problems

- **You can’t fix what you can’t find**
- **You can’t find what you can’t see**
- **perfSONAR lets you see**

- Especially important when deploying high performance services
 - If there is a problem with the infrastructure, need to fix it
 - If the problem is not with your stuff, need to prove it
 - Many players in an end to end path
 - Ability to show correct behavior aids in problem localization
What is perfSONAR?

- perfSONAR is a tool to:
 - Set network performance expectations
 - Find network problems ("soft failures")
 - Help fix these problems
 - All in multi-domain environments

- These problems are all harder when multiple networks are involved
- perfSONAR is provides a standard way to publish active and passive monitoring data
 - This data is interesting to network researchers as well as network operators
perfSONAR History

• perfSONAR can trace its origin to the Internet2 “End 2 End performance Initiative” from the year 2000. What has changed since then?
 • The Good News:
 • TCP is much less fragile; Cubic is the default CC alg, autotuning is and larger TCP buffers are everywhere
 • Reliable parallel transfers via tools like Globus Online
 • High-performance UDP-based commercial tools like Aspera
 • The Bad News:
 • The *wizard gap* is still large
 • Jumbo frame use is still small
 • Under-buffered and switches and routers are still common
 • Under-powered/misconfigured firewalls are common
 • Soft failures still go undetected for months
 • User performance expectations are still too low
Simulating Performance

• It’s infeasible to perform at-scale data movement all the time – as we see in other forms of science, we need to rely on simulations

• Network performance comes down to a couple of key metrics:
 • Throughput (e.g. “how much can I get out of the network”)
 • Latency (time it takes to get to/from a destination)
 • Packet loss/duplication/ordering (for some sampling of packets, do they all make it to the other side without serious abnormalities occurring?)
 • Network utilization (the opposite of “throughput” for a moment in time)

• We can get many of these from a selection of active and passive measurement tools – enter the perfSONAR Toolkit
perfSONAR Toolkit

• The “perfSONAR Toolkit” is an open source implementation and packaging of the perfSONAR measurement infrastructure and protocols
 • http://docs.perfsonar.net/install_getting.html

• All components are available as RPMs, DEBs, and bundled as CentOS 7, Debian 7,8,9 or Ubuntu 14 and 16 -based packages (as for perfSONAR v. 4.0.1)
 • perfSONAR tools are much more accurate if run on a dedicated perfSONAR host

• Very easy to install and configure
 • Usually takes less than 30 minutes
Outline

• Problem Statement on Network Connectivity
• Supporting Scientific Users
• Network Performance & TCP Behaviors w/ Packet Loss
• What is perfSONAR
• Deployment Overview
• Conclusions
Toolkit “Beacon” Use Case

• The general use case is to establish some set of tests to other locations/facilities

• To answer the what/why questions:
 • Regular testing with select tools helps to establish patterns – how much bandwidth we would see during the course of the day – or when packet loss appears
 • We do this to ‘points of interest’ to see how well a real activity (e.g. Globus transfer) would do.

• If performance is ‘bad’, don’t expect much from the data movement tool
Benefits: Finding the needle in the haystack

• Above all, perfSONAR allows you to maintain a healthy, high-performing network because it helps identify the “soft failures” in the network path.
 • Classical monitoring systems have limitations
 • Performance problems are often only visible at the ends
 • Individual network components (e.g. routers) have no knowledge of end host state
 • perfSONAR tests the network in ways that classical monitoring systems do not

• More perfSONAR distributions equal better network visibility.
Deployment By The Numbers

• Last updated August 2015. Adoption trend increases with each release. CC-NIE and innovation platform helped as well.
http://stats.es.net/ServicesDirectory/
perfSONAR Dashboard: Raising Expectations and improving network visibility

Status at-a-glance
• Packet loss
• Throughput
• Correctness

Current live instances at
http://pas.net.internet2.edu/
http://ps-dashboard.es.net/

Drill-down capabilities:
• Test history between hosts
• Ability to correlate with other events
• Very valuable for fault localization and isolation
Outline

• Problem Statement on Network Connectivity
• Supporting Scientific Users
• Network Performance & TCP Behaviors w/ Packet Loss
• What is perfSONAR
• Deployment Overview
• Conclusions
Benefit: Active and Growing Community

• Active email lists provide:
 • Instant access to advice and expertise from the community.
 • Ability to share metrics, experience and findings with others to help debug issues on a global scale.

• Joining the community automatically increases the reach and power of perfSONAR
 • The more endpoints means exponentially more ways to test and discover issues, compare metrics
perfSONAR Community

• The perfSONAR collaboration is working to build a strong user community to support the use and development of the software.

• perfSONAR Mailing Lists
 • Announcement Lists:
 • https://lists.internet2.edu/sympa/subscribe/perfsonar-user
 • Users List:
 • https://lists.internet2.edu/sympa/subscribe/perfsonar-announce
Resources

• perfSONAR website
 • http://www.perfsonar.net/

• perfSONAR Documentation
 • http://docs.perfsonar.net/

• perfSONAR mailing lists
 • http://www.perfsonar.net/about/getting-help/

• perfSONAR directory
 • http://stats.es.net/ServicesDirectory/

• perfSONAR YouTube Channel
 • https://www.youtube.com/channel/UCjKP49pAKK9hUrrNbBe05g

• FasterData Knowledgebase
 • http://fasterdata.es.net/
What is perfSONAR?

Meshbuilder Workshop

Scott Chevalier, IN@IU, schevali@iu.edu
Antoine Delvaux, GEANT Project, antoine.delvaux@man.poznan.pl
Doug Southworth, IN@IU, dojosout@iu.edu

This document is a result of work by the perfSONAR Project (http://www.perfsonar.net) and is licensed under CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/).