The Information Management Code Registry: *Software Solutions for Information Management Needs*

Colin Smith and Kristin Vanderbilt
Earth Science Information Partners (ESIP)
Summer Meeting (July 17, 2019)

bit.ly/imcr-notes
Overview

◎ Introduction
◎ Report
◎ Activities
Central to enhancing the use and value of Earth Science data are good information management practices, and the Information Management Code Registry works to this end by facilitating discovery and use of software solutions for information management needs.
Large research groups
Have IM expertise

Small research groups
Need IM expertise
Scope

IM software
Providing software for IM tasks whether run from a users local machine or accessed via web-services.

Open source
Emphasizing freely accessible and community supported software while not excluding proprietary sources.

Small teams
Focused on the needs of individuals and small research teams working in the “Earth Sciences” domain.
Goals

Accelerate IM tasks
Simplify discovery and use through a comprehensive registry searchable by task, language, and science domain, returning high level information for fitness of use assessments.

Facilitate development
Highlight new opportunities by identifying coverage gaps, openly discussing and recording community ideas, and organizing hackathons.
Report
○ Implementation
○ Curation
○ Discovery
○ Maintenance
○ Engagement
Implementation

The IMCR is implemented in OntoSoft, which provides a robust and rich science software ontology, and human friendly interface to search and discovery.

http://www.ontosoft.org/index.html
Implementation

Identify
 Locate - unique identifier

Understand
 Relate - domain knowledge
 Trust - quality and ratings

Do Research
 Experiment - run with data
 Compose - run with software
 Cite - scientific publications

Execute
 Access - download
 Install - execution requirements
 Run - testing execution

Get Support
 Discuss - community support

Update
 Track - evolution
 Contribute - evolution

http://ontosoft-earthcube.github.io/ontosoft/ontosoft%20ontology/v1.0.1/doc/
Implementation

Identify
 Locate - unique identifier

Understand
 Relate - domain knowledge
 Trust - quality and ratings

Do Research
 Experiment - run with data
 Compose - run with software
 Cite - scientific publications

Execute
 Access - download
 Install - execution requirements
 Run - testing execution

Get Support
 Discuss - community support

Update
 Track - evolution
 Contribute - evolution

http://ontosoft-earthcube.github.io/ontosoft/ontosoft%20ontology/v1.0.1/doc/
Curation

An ongoing process involving manual discovery and metadata entry primarily done by IMCR maintainers, though anyone is welcome to contribute.
Curation

Software Repository
Describe your software so others can find and use it

Software List

Alfred-Workflow
Alfred-Workflow is a Python helper library for Alfred 2, 3 and 4 workflow authors, developed and hosted on GitHub.

Alfred workflows typically take user input, fetch data from the Web or elsewhere, filter them and display results to the user. Alfred-Workflow takes care of a lot of the details for...

Author: Dean Jackson
Posted by: csmithe at 2019-07-07 16:26

antiword
Wraps the AntiWord utility to extract text from Microsoft Word documents. The utility only supports the old doc format, not the new xml based docx format.

Author: Jeroen Ooms
Posted by: csmithe at 2019-03-06 12:50

arkdb
The goal of arkdb is to provide a convenient way to move data from large compressed text files (tsv, csv, etc) into any DBI-compliant database connection (e.g. MySQL, Postgres, SQLite; see DBI), and move tables out of such databases into text files. The key feature of arkdb is that files are move...

Author: Carl Boettiger
Posted by: csmithe at 2019-03-08 14:22

arrow
Arrow is a Python library that offers a sensible, human-friendly approach to creating, manipulating, formatting and converting dates, times, and timestamps. It implements and updates the datetime type, plugging gaps in functionality, and provides an intelligent module API that supports many common...

Author: Chris Smith
Posted by: csmithe at 2019-07-06 21:33

http://imcr.ontosoft.org/#list
Curation

http://imcr.ontosoft.org/#list
Curation

The IMCR now contains 183 software libraries primarily focused on R and Python and spanning a broad range of IM tasks.
Curation

Total Software by Task

- assurance: 67
- integration: 64
- collection: 68
- describing: 48
- cleaning: 46
- quality_control: 41
- validation: 37
- import: 36
- transformation: 23
- reporting: 23
- metadata_creation: 21
- retrieval: 14
- preservation: 13
- visual_assurance: 12
- discovery: 11
- searching: 10
- conversion: 10
- mining: 9
- formatting: 9
- planning: 8
- cataloging: 7
- delivery: 5
- archiving: 4
- annotation: 4
- quality_assurance: 3
- workflow_planning: 3
- subsetting: 3
- scraping: 3
- project_planning: 2
- deidentification: 2
- calibration: 2
- workflow_management: 1
- storage: 1
- automated_quality_control: 1

Number
Curation
Discovery

OntoSoft provides an simple and effective search interface for discovering software by core attributes.

http://imcr.ontosoft.org/#list
Keyword searches are enhanced with a controlled vocabulary organized around the DataONE research life-cycle and common IM tasks therein.

http://vocab.lternet.edu/vocab/registry/
Discovery

We enable discovery by science discipline using a section of the LTER controlled vocabulary.

http://vocab.lternet.edu/vocab/vocab/index.php
Maintenance

Automated maintenance of software metadata ensures content is current, accurate, and is maintained with minimal effort.
Engagement

Highlighting gaps in coverage, openly discussing and recording ideas, and organizing hackathons will develop new and useful tools.
Summary

IM software
Providing software for IM tasks whether run from a users local machine or accessed via web-services.

Open source
Emphasizing freely accessible and community supported software while not excluding proprietary sources.

Small teams
Focused on the needs of individuals and small research teams working in the “Earth Sciences” domain.
Summary

Implementation
Complete.

Curation
Ongoing manual process.

Discovery
Simple search augmented by controlled vocabularies.

Maintenance
Automation will ensure accuracy and reduce effort.

Engagement
Creating new tools as a community.
Activities

- Delineating potential
- Facilitating development
- Test-driving search and discovery
- Handling non-generalized code

bit.ly/imcr-notes
Delineating potential

You just heard the scope of our plans for IMCR ...
- How else can this resource be utilized?
- Where are the collaborative opportunities?
- What aspects of our plans need reconsideration?
Facilitating development

We plan on facilitating software development by exposing gaps and needs then organizing hackathons ...

- What info can be mined from the metadata?
- What are effective ways in gathering community ideas?
- How can we support hackathons?
- What other ways can we facilitate development?
Test-driving search and discovery

Review the IMCR controlled vocabulary and use it to search the portal for software of interest.

◎ Do you find what you expect?
◎ Do the search fields support the content you’d like to search on?
◎ Comments on the vocab structure?
◎ What terms should be added or removed?
Handling non-generalized code

Sharing non-generalized code, or code that is not apart of a library can be useful.

◎ How can we support this type of software?
◎ Is there utility or is it just clutter?
◎ How could it be implemented?
Thanks!

Stop by the IMCR Wiki for onboarding materials (bit.ly/IMCRwiki)

NSF grants #1565103 and #1629233
Slide Deck Credits

Special thanks to all the people who made and released these awesome resources for free:

- **Simple line icons** by Mirko Monti
- **E-commerce icons** by Virgil Pana
- **Streamline iconset** by Webalys
- Presentation template by **SlidesCarnival**
- Photographs by **Unsplash** & **Death to the Stock Photo (license)**