Deep Learning-driven Geophysics Applications

2018 RICE OIL & GAS HPC CONFERENCE

Mauricio Araya-Polo
Shell International Exploration & Production Inc.
DEFINITIONS AND CAUTIONARY NOTE

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. In this presentation, joint ventures and associates may also be referred to as “equity-accounted investments”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect (for example, through our 23% shareholding in Woodside Petroleum Ltd.) ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2012 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, March 13, 2018. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.

Copyright of Shell International
Agenda

- Motivation
- Workflows
- Deep Learning-based applications
 - GeoDNN, Fault detection
 - GeoDNN, Tomography
- Conclusions

- Acks:
 - Joseph Jennings (summer 2017) and Taylor Dahlke (summer 2016) (Stanford U.)
 - Detlef Hohl and Paul Gelderblom (Shell)
Motivation

- Machine Learning (ML) techniques will (soon?, when?) disrupt the existing exploration/production workflows
- Better to be early adopters or trailblazers
 - Big buzz around Deep Learning (DL) nowadays, but is it applicable to our problems? Which one of them?
 - Do we need to re-think our workflows around DL?
- Effective collaboration around the topic between domain experts and ML folks
 - ML moves extremely fast, hard to see domain experts catching up and at the same time on top of their scientific problems
Geophysical Feature Detection

Step 1: Processing & Interpretation

Seismic interpretation
Seismic acquisition and processing

Well log analysis and tie-in

Geologic interpretation modeling

Reservoir modeling

Step 2: Feedback loop & Iterations

Geophysical Features & Structures
Automated Geophysical Feature Detection

Early stages feature detection can help to steer the interpretation & modeling process.

Step 0: Feature Detection

Step 1: Processing & Interpretation

Seismic interpretation
Seismic acquisition and processing

Well log analysis and tie-in

Geologic interpretation modeling

Reservoir modeling

Step 2: Feedback loop & Iterations

Copyright of Shell International
Automated Geophysical Feature Detection, what feature?

From raw seismic traces, discover (classification) and locate (structured prediction) faults in the underground structure, no processing involved.

- Universal Approximation Theorem, Hornik 89

Automated Geophysical Feature Detection, GeoDNN, workflow

- Synthetic data is generated since labeled examples are hard to access
- First results published in EAGE2014 with kernel methods, first DNN results in 2015
Results (published in ICML2015 FEAST workshop), 2D synthetics
Results (published in NIPS16-3D DL workshop and SEG TLE 03/2017), 3D synthetics

*NIPS15 publication about a novel structured oriented loss function
Results (published in SEG TLE 03/2017*), 3D synthetics

Model

Ground-truth

Prediction

*most downloaded non-free paper of TLE during 2017
Deep Learning, the HPC connection

Asynchronized Data IO

CPU
Stochastic Gradient Descent Solver Scheduling

GPU Parallel Computing

Data Warehouse

hdf5/TFrecords

MIT Julia/TF

NVidia cuDNN

Deep Neural Networks
Deep Learning Tomography (workflows)

Training
- Ground-truth Velocity Models
- Simulated Seismic Data
- Feature Extraction
- Neural Model Training

Testing
- Ground-truth Velocity Models
- Simulated Seismic Data
- Trained Neural Model
- Reconstructed Velocity Models

Deployment
- Recorded Seismic Data
- Tomography Operator
- Reconstructed Velocity Models
Deep Learning Tomography*, semblance cube as feature

\[s[i] = \left(\frac{\sum_{j=i-M}^{i+M} \left(\sum_{k=0}^{N-1} q[j, k] \right)^2}{\sum_{j=i-M}^{i+M} \sum_{k=0}^{N-1} q[j, k]^2} \right)^2 \]

- \(q[j, k] \) - NMO-corrected image for a particular velocity
- \(j \) - time index
- \(k \) - offset index
- \(i \) - output index
- \(M \) - length of smoothing window

* Published in SEG TLE 01/2018
Deep Learning in other fields, 3D segmentation

Deep Learning Tomography: Results I (09/2017)
Deep Learning Tomography: Results II (09/2017)
Deep Learning Tomography: Metrics

- Models with salt bodies. 6400 training models, 1600 evaluation models and 2000 testing models.
- Training takes 10 hours using 4 GPUs in 1 computing node, data parallel approach.
- Inference takes less than a minute for all 2000 testing models.
Conclusions

- Working Deep-learning based system for automated geophysical feature detection from raw seismic data, technology disruptor.
- Deep Learning Tomography can be also used as pre-conditioner or accelerator of FWI iterations
- Computer Scientist and domain experts need to work in really agile and short loops, major labor force change
- Real data testing and extension to 3D underway.
- Actions:
 - Co-design new workflows where ML-based tools naturally fit
 - Train your people for what is coming