Algorithmic Adaptations to Extreme Scale

David Keyes, Applied Mathematics & Computational Science
Director, Extreme Computing Research Center (ECRC)
King Abdullah University of Science and Technology
david.keyes@kaust.edu.sa
“A good player plays where the puck is, while a great player skates to where the puck is going to be.”

– Wayne Gretzsky
Aspiration for this talk

To paraphrase Gretzsky:

“Algorithms for where architectures are going to be”

Such algorithms may *or may not* be the best today; however, hardware trends can be extrapolated to the new potential “sweet spots.”
Outline

- Architectural and applications trends
 - dead ends for our current software infrastructures for simulation and big data at exascale

- Four algorithmic imperatives
 - for extreme scale, tomorrow and today

- Four sets of “bad news, good news”

- Four widely applicable strategies

- Four “points of light” (work in progress)
 - sample contributions to a new algorithmic infrastructure
Architectural trends

- Clock rates cease to increase while arithmetic capability continues to increase through concurrency (flooding of cores)
- Memory storage capacity increases, but fails to keep up with arithmetic capability per core
- Transmission capability – memory BW and network BW – increases, but fails to keep up with arithmetic capability per core
- Mean time between hardware interrupts shortens
Billions of dollars of scientific software worldwide hangs in the balance until our algorithmic infrastructure evolves to span the architecture-applications gap.
Architectural background

www.exascale.org/iesp

The International Exascale Software Roadmap

Uptake from IESP meetings

- While obtaining the next order of magnitude of performance, we need another order of performance efficiency
 - target: 50 Gigaflop/s/W, today typically ~ 5 Gigaflop/s/W

- Power may be cycled off and on, or clocks slowed and speeded
 - may be scheduled, based on phases with different power requirements, or may be dynamic from thermal monitoring
 - makes per-node performance rate unreliable
 - overprovisioned, specialized inhomogeneous nodes, sometimes dark

- Required reduction in power per flop and per byte may make computing and moving data less reliable
 - circuit elements will be smaller and subject to greater physical noise per signal, with less space redundancy and/or time redundancy for resilience in the hardware
 - more errors may need to be caught and corrected in software
Today’s power costs per operation

<table>
<thead>
<tr>
<th>Operation</th>
<th>approximate energy cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP floating point multiply-add</td>
<td>100 pJ</td>
</tr>
<tr>
<td>DP DRAM read-to-register</td>
<td>4800 pJ</td>
</tr>
<tr>
<td>DP word transmit-to-neighbor</td>
<td>7500 pJ</td>
</tr>
<tr>
<td>DP word transmit-across-system</td>
<td>9000 pJ</td>
</tr>
</tbody>
</table>

A pico \((10^{-12})\) of something done exa \((10^{18})\) times per second is a mega \((10^6)\)-somethings per second

- 100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!)
- 1 MW-year costs about $1M \((0.12$/KW-hr \times 8760$ hr/yr)\)
 - We “use” 1.4 KW continuously, so 100MW is 71,000 people
Why exa- is different

Dennard’s MOSFET scaling (1972) ends before Moore’s Law (1965) ends

Table 1
Scaling Results for Circuit Performance

<table>
<thead>
<tr>
<th>Device or Circuit Parameter</th>
<th>Scaling Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device dimension (t_{ox}, L, W)</td>
<td>(1/\kappa)</td>
</tr>
<tr>
<td>Doping concentration (N_a)</td>
<td>(\kappa)</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>(1/\kappa)</td>
</tr>
<tr>
<td>Current (I)</td>
<td>(1/\kappa)</td>
</tr>
<tr>
<td>Capacitance (\epsilon A/t)</td>
<td>(1/\kappa)</td>
</tr>
<tr>
<td>Delay time/circuit (VC/I)</td>
<td>(1/\kappa^2)</td>
</tr>
<tr>
<td>Power dissipation/circuit (VI)</td>
<td>(1/\kappa^2)</td>
</tr>
<tr>
<td>Power density (VI/A)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

Table 2
Scaling Results for Interconnection Lines

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Scaling Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line resistance, (R_L = \rho L/Wt)</td>
<td>(\kappa)</td>
</tr>
<tr>
<td>Normalized voltage drop (IR_L/V)</td>
<td>(\kappa)</td>
</tr>
<tr>
<td>Line response time (R_L C)</td>
<td>(1)</td>
</tr>
<tr>
<td>Line current density (I/A)</td>
<td>(\kappa)</td>
</tr>
</tbody>
</table>

Robert Dennard, IBM
(inventor of DRAM, 1966)

Eventually processing is limited by transmission, as known for 4.5 decades
The long-predicted demise of Moore’s Law appears to be playing out. Over the last couple of years, Intel and other chipmakers have struggled to keep their semiconductor technology plans on schedule, paving the way for fundamental changes in the computer industry.

To be clear, this is not the end of transistor shrinkage. That should proceed at a reduced pace for the next several years. But the traditional 18-month to two-year cycle of doubling transistor density is over. Intel appears to be planning to deploy its fourth processor generation on essentially the same 14nm process technology it introduced in 2014.

A landmark article on the death of Moore’s Law published last year in MIT Technology Review, noted that Intel’s 10 nm process technology deployment was moved from 2016 to late 2017. Although officially that’s still the plan, rumors of problems with defects and yields may delay the rollout even further. And Intel’s 7nm process node won’t be available until 2021 or 2022. So much for two-year cycles
Architectural resources to enlist

- **Processing cores**
 - heterogeneous (CPUs, MICs, GPUs, FPGAs,...)

- **Memory**
 - hierarchical (registers, caches, DRAM, flash, stacked, ...)
 - partially reconfigurable

- **Intra-node network**
 - nonuniform bandwidth and latency

- **Inter-node network**
 - nonuniform bandwidth and latency
Well established resource trade-offs

- **Communication-avoiding algorithms**
 - exploit extra memory to achieve theoretical lower bound on communication volume

- **Synchronization-avoiding algorithms**
 - perform extra flops between global reductions or exchanges to require fewer global operations

- **High-order discretizations**
 - perform more flops per degree of freedom (DOF) to store and manipulate fewer DOFs
Node-based “weak scaling” is routine; thread-based “strong scaling” is the game

- An exascale configuration: 1 million 1000-way 1GHz nodes
- Expanding the number of nodes (processor-memory units) beyond 10^6 would *not* be a serious threat to algorithms that lend themselves to well-amortized precise load balancing
 - provided that the nodes are performance reliable
- Real challenge is usefully expanding the number of cores sharing memory on a node to 10^3
 - must be done while memory and memory bandwidth per node expand by (at best) ten-fold less (basically “strong” scaling)
 - don’t need to wait for full exascale systems to experiment in this regime – the contest is being waged on individual shared-memory nodes today
The familiar

Taihu Light

Shaheen

Sequoia

K
The challenge
Two decades of evolution

1997

ASCI Red at Sandia by Intel

1.3 TF/s, 850 KW

2016

Intel Xeon Phi MIC KNL

3.5 TF/s, 0.26 KW
Supercomputer in a node

<table>
<thead>
<tr>
<th>System</th>
<th>Peak DP</th>
<th>Peak Power</th>
<th>Power Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCI Red (1997-2006)</td>
<td>1.3 TFlop/s</td>
<td>850 KW</td>
<td>0.0015 GFlop/s/Watt</td>
</tr>
</tbody>
</table>
How are most scientific simulations implemented at the petascale today?

- **Iterative methods based on data decomposition and message-passing**
 - data structures are distributed
 - each individual processor works on a subdomain of the original
 - exchanges information with other processors that own data with which it interacts causally, to evolve in time or to establish equilibrium
 - computation and neighbor communication are both fully parallelized and their ratio remains constant in weak scaling

- **The programming model is BSP/SPMD/CSP**
 - Bulk Synchronous Programming
 - Single Program, Multiple Data
 - Communicating Sequential Processes

Three decades of stability in programming model
Bulk Synchronous Parallelism

Leslie Valiant, Harvard
2010 Turing Award Winner

A Bridging Model for Parallel Computation

Comm. of the ACM, 1990

The success of the von Neumann model of sequential computation is attributable to the fact that it is an efficient bridge between software and hardware: high-level languages can be efficiently compiled on to this model; yet it can be efficiently implemented in hardware. The author argues that an analogous bridge between software and hardware is required for parallel computation if that is to become as widely used. This article introduces the bulk-synchronous parallel (BSP) model as a candidate for this role, and gives results quantifying its efficiency both in implementing high-level language features and algorithms, as well as in being implemented in hardware.
BSP parallelism w/ domain decomposition

Partitioning of the grid induces block structure on the system matrix (Jacobian)
BSP has an impressive legacy

By the Gordon Bell Prize, performance on real applications (e.g., mechanics, materials, petroleum reservoirs, etc.) has improved more than a million times in two decades. Simulation cost per performance has improved by nearly a million times.

<table>
<thead>
<tr>
<th>Year</th>
<th>Gordon Bell Prize: Peak Performance</th>
<th>Gigaflop/s delivered to applications</th>
<th>Gordon Bell Prize: Price Performance</th>
<th>Year</th>
<th>Cost per delivered Gigaflop/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>1</td>
<td>1</td>
<td>1989</td>
<td>$2,500,000</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>1,020</td>
<td>1,020</td>
<td>1999</td>
<td>$6,900</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>1,350,000</td>
<td>1,350,000</td>
<td>2009</td>
<td>$8</td>
<td></td>
</tr>
</tbody>
</table>
Riding exponentials

 - *same* BSP programming model
 - *same* assumptions about who (hardware, systems software, applications software, etc.) is responsible for what (resilience, performance, processor mapping, etc.)
 - *same* classes of algorithms (*cf.* 25 yrs. of Gordon Bell Prizes)
- Scientific computing now at a crossroads with respect to extreme scale
Extrapolating exponentials eventually fails

- **Exa-** is qualitatively different and looks more difficult
 - but we once said that about message passing

- Core numerical analysis and scientific computing will confront exascale to maintain relevance
 - potentially big gains in colonizing exascale for science and engineering
 - not a “distraction,” but an intellectual stimulus
 - the journey will be as fun as the destination 😊
Main challenge going forward for BSP

- Almost all “good” algorithms in linear algebra, differential equations, integral equations, signal analysis, etc., like to globally synchronize – and frequently!
 - inner products, norms, pivots, fresh residuals are “addictive” idioms
 - tends to hurt efficiency beyond 100,000 processors
 - can be fragile for smaller concurrency, as well, due to algorithmic load imbalance, hardware performance variation, etc.

- Concurrency is heading into the billions of cores
 - already 10 million on the most powerful system today
Energy-aware generation

BSP generation
Applications background

www.exascale.org/bdec

Big Data and Extreme Computing: Pathways to Convergence

J. Dongarra, P. Beckman, et al., downloadable in draft form at URL above

Successor to The International Exascale Software Roadmap, by many of the same authors and new authors from big data
Challenge for applications: merging software for 3rd and 4th paradigms
Interactions between application archetypes
Increasingly, there is scientific opportunity in pipelining

Convergence is ripe

<table>
<thead>
<tr>
<th></th>
<th>To Simulation</th>
<th>To Analytics</th>
<th>To Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation provides</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4th (a)</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Analytics provides</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>4th (b)</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Learning provides</td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
Increasingly, there is scientific opportunity in pipelining. **Convergence is ripe**

<table>
<thead>
<tr>
<th></th>
<th>To Simulation</th>
<th>To Analytics</th>
<th>To Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd</td>
<td>Simulation provides</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4th (a)</td>
<td>Analytics provides</td>
<td>Steering in high dimensional parameter space; In situ processing</td>
<td>—</td>
</tr>
<tr>
<td>4th (b)</td>
<td>Learning provides</td>
<td>Smart data compression; Replacement of models with learned functions</td>
<td>—</td>
</tr>
</tbody>
</table>
Interactions between application archetypes
Increasingly, there is scientific opportunity in pipelining

Convergence is ripe

<table>
<thead>
<tr>
<th></th>
<th>To Simulation</th>
<th>To Analytics</th>
<th>To Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd</td>
<td>Simulation provides</td>
<td>—</td>
<td>Physics-based “regularization”</td>
</tr>
<tr>
<td>4th</td>
<td>Analytics provides</td>
<td>Steering in high dimensional parameter space; In situ processing</td>
<td>—</td>
</tr>
<tr>
<td>4th</td>
<td>Learning provides</td>
<td>Smart data compression; Replacement of models with learned functions</td>
<td>—</td>
</tr>
</tbody>
</table>
Interactions between application archetypes

Increasingly, there is scientific opportunity in pipelining

→ *Convergence is ripe*

<table>
<thead>
<tr>
<th>3rd</th>
<th>To Simulation</th>
<th>To Analytics</th>
<th>To Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation provides</td>
<td>—</td>
<td>Physics-based “regularization”</td>
<td>Data for training, augmenting real-world data</td>
</tr>
</tbody>
</table>

4th (a)	To Simulation	To Analytics	To Learning
	Analytics provides		
	Steering in high dimensional parameter space; *In situ* processing	—	Feature vectors for training

4th (b)	To Simulation	To Analytics	To Learning
	Learning provides		
	Smart data compression; Replacement of models with learned functions	Imputation of missing data; Detection and classification	—
Four algorithmic imperatives

- Reduce synchrony (in frequency and/or span)
- Reside “high” on the memory hierarchy
 - as close as possible to the processing elements
- Increase SIMT/SIMD-style shared-memory concurrency
- Build in resilience (“algorithm-based fault tolerance” or ABFT) to arithmetic/memory faults or lost/delayed messages
Bad news/good news

- Must explicitly control more of the data motion
 - carries the highest energy and time cost in the exascale computational environment

- More opportunities to control the *vertical* data motion
 - *horizontal* data motion under control of users already
 - but vertical replication into caches and registers was (until recently) mainly scheduled and laid out by hardware and runtime systems, mostly invisibly to users
Bad news/good news

- Use of uniform high precision in nodal bases on dense grids may decrease, to save storage and bandwidth
 - representation of a smooth function in a hierarchical basis or on sparse grids requires fewer bits than storing its nodal values, for equivalent accuracy

- We may compute and communicate “deltas” between states rather than the full state quantities
 - as when double precision was once expensive (e.g., iterative correction in linear algebra)
 - a generalized “combining network” node or a smart memory controller may remember the last address and the last value, and forward just the delta

- Equidistributing errors properly to minimize resource use will lead to innovative error analyses in numerical analysis
Bad news/good news

- Fully deterministic algorithms may be regarded as too synchronization-vulnerable
 - rather than wait for missing data, we may predict it using various means and continue
 - we do this with increasing success in problems without models ("big data")
 - should be fruitful in problems coming from continuous models
 - “apply machine learning to the simulation machine”

- A rich numerical analysis of algorithms that make use of statistically inferred “missing” quantities may emerge
 - future sensitivity to poor predictions can often be estimated
 - numerical analysts will use statistics, signal processing, ML, etc.
Bad news/good news

- Fully hardware-reliable executions may be regarded as too costly
- Algorithmic-based fault tolerance (ABFT) will be cheaper than hardware and OS-mediated reliability
 - developers will partition their data and their program units into two sets
 - a small set that must be done reliably (with today’s standards for memory checking and IEEE ECC)
 - a large set that can be done fast and unreliably, knowing the errors can be either detected, or their effects rigorously bounded
- Many examples in direct and iterative linear algebra
- Anticipated by Von Neumann, 1956 (‘‘Synthesis of reliable organisms from unreliable components’’)

Algorithmic philosophy

- Algorithms must span the widening gulf

 adaptive
 algorithms

ambitious
applications

austere
architectures

A full employment program for computational scientists and engineers 😊
What will exascale algorithms look like?

- For weak scaling, must *start* with algorithms with optimal asymptotic order, $O(N \log^p N)$
- Some optimal hierarchical algorithms
 - Fast Fourier Transform (1960’s)
 - Multigrid (1970’s)
 - Fast Multipole (1980’s)
 - Sparse Grids (1990’s)
 - \mathcal{H} matrices (2000’s)
 - Randomized algorithms (2010’s)

“With great computational power comes great algorithmic responsibility.” – Longfei Gao
Required software (see DOE’s new ECP)

<table>
<thead>
<tr>
<th>Model-related</th>
<th>Development-related</th>
<th>Production-related</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric modelers</td>
<td>Configuration systems</td>
<td>Dynamic resource management</td>
</tr>
<tr>
<td>Meshers</td>
<td>Source-to-source translators</td>
<td>Dynamic performance optimization</td>
</tr>
<tr>
<td>Discretizers</td>
<td>Compilers</td>
<td>Authenticators</td>
</tr>
<tr>
<td>Partitioners</td>
<td>Simulators</td>
<td>I/O systems</td>
</tr>
<tr>
<td>Solvers / integrators</td>
<td>Messaging systems</td>
<td>Visualization systems</td>
</tr>
<tr>
<td>Adaptivity systems</td>
<td>Debuggers</td>
<td>Workflow controllers</td>
</tr>
<tr>
<td>Random no. generators</td>
<td>Profilers</td>
<td>Frameworks</td>
</tr>
<tr>
<td>Subgridscale physics</td>
<td></td>
<td>Data miners</td>
</tr>
<tr>
<td>Uncertainty</td>
<td></td>
<td>Fault monitoring, reporting, and recovery</td>
</tr>
<tr>
<td>quantification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic load balancing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphs and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>combinatorial algs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compression</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

High-end computers come with little of this stuff. Most has to be contributed by the user community.
Midpoint: recap of algorithmic agenda

- **New formulations with**
 - reduced synchronization and communication
 - less frequent *and/or* less global
 - reside high on the memory hierarchy
 - greater arithmetic intensity (flops per byte moved into and out of registers and upper cache)
 - greater SIMT/SIMD-style thread concurrency for accelerators
 - algorithmic resilience to various types of faults

- **Quantification of trades between limited resources**

- **Plus all of the exciting analytical agendas that exascale is meant to exploit**
 - “post-forward” problems: optimization, data assimilation, parameter inversion, uncertainty quantification, etc.
Four widely applicable strategies

- Employ dynamic runtime systems based on directed acyclic task graphs (DAGs)
 - e.g., Charm++, Quark, StarPU, Legion, OmpSs, HPX, ADLB, Argo

- Exploit data sparsity of hierarchical low-rank type
 - “meet the curse of dimensionality with the blessing of low rank”

- Employ high-order discretizations

- Code to the architecture, but present an abstract API
Taskification based on DAGs

- **Advantages**
 - remove artifactual synchronizations in the form of subroutine boundaries
 - remove artifactual orderings in the form of pre-scheduled loops
 - expose more concurrency

- **Disadvantages**
 - pay overhead of managing task graph
 - potentially lose some memory locality
Reducing over-ordering and synchronization through dataflow, ex.: generalized eigensolver

\[Ax = \lambda Bx \]

<table>
<thead>
<tr>
<th>Operation</th>
<th>Explanation</th>
<th>LAPACK routine name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B = L \times L^T)</td>
<td>Cholesky factorization</td>
<td>POTRF</td>
</tr>
<tr>
<td>(C = L^{-1} \times A \times L^{-T})</td>
<td>application of triangular factors or HEGST</td>
<td>SYGST</td>
</tr>
<tr>
<td>(T = Q^T \times C \times Q)</td>
<td>tridiagonal reduction</td>
<td>SYEVD or HEEVD</td>
</tr>
<tr>
<td>(Tx = \lambda x)</td>
<td>QR iteration</td>
<td>STERF</td>
</tr>
</tbody>
</table>

Diagram showing a network of operations and dataflow.
Loop nests and subroutine calls, with their over-orderings, can be replaced with DAGs

- Diagram shows a dataflow ordering of the steps of a 4×4 symmetric generalized eigensolver
- Nodes are tasks, color-coded by type, and edges are data dependencies
- Time is vertically downward
- Wide is good; short is good
Loops can be overlapped in time

Green, blue and magenta symbols represent tasks in separate loop bodies with dependences from an adaptive optics computation

Zooming-in...

c/o H. Ltaief (KAUST) & D. Gratadour (OdP)
DAG-based safe out-of-order execution

Tasks from the 3 loops are scheduled together
Hierarchically low-rank operators

- **Advantages**
 - shrink memory footprints to live higher on the memory hierarchy
 - higher means quick access
 - reduce operation counts
 - tune work to accuracy requirements
 - e.g., preconditioner versus solver

- **Disadvantages**
 - pay cost of compression
 - not all operators compress well
Key tool: hierarchical matrices

• [Hackbusch, 1999]: off-diagonal blocks of typical differential and integral operators have low effective rank

• By exploiting low rank, k, memory requirements and operation counts approach optimal in matrix dimension n:

 — polynomial in k

 — lin-log in n

 — constants carry the day

• Such hierarchical representations navigate a compromise

 — fewer blocks of larger rank (“weak admissibility”) or

 — more blocks of smaller rank (“strong admissibility”)
Example: 1D Laplacian

\[A = \begin{bmatrix}
2 & -1 \\
-1 & 2 & -1 \\
-1 & 2 & -1 \\
-1 & 2
\end{bmatrix} \]

\[A^{-1} = \frac{1}{8} \times \begin{bmatrix}
7 & 6 & 5 \\
6 & 12 & 10 \\
5 & 10 & 15 \\
4 & 8 & 12 \\
3 & 6 & 9 \\
2 & 4 & 6 \\
1 & 2 & 3
\end{bmatrix} \]

\[= \begin{bmatrix}
0 \\
0 \\
-1 \\
0 \\
0 \\
0 \\
0
\end{bmatrix} \begin{bmatrix}
-1 & 0 & 0 & 0
\end{bmatrix} \]

\[= \begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix} \begin{bmatrix}
4 & 3 & 2 & 1
\end{bmatrix} \]
Recursive construction of an H-matrix
“Standard (strong)” vs. “weak” admissibility

After Hackbusch, et al., 2003
Employ high-order discretizations

- **Advantages**
 - (also) shrink memory footprints to live higher on the memory hierarchy
 - higher means shorter latency
 - increase arithmetic intensity
 - reduce operation counts

- **Disadvantages**
 - high-order operators less suited to some solvers
 - e.g., algebraic multigrid, H-matrices*

* but see Gatto & Hesthaven, Dec 2016, on H for hp FEM
Code to the architecture

- **Advantages**
 - tiling and recursive subdivision create large numbers of small problems suitable for batched operations on GPUs and MICs
 - reduce call overheads
 - polyalgorithmic approach based on block size
 - non-temporal stores, coalesced memory accesses, double-buffering, etc. reduce sensitivity to memory

- **Disadvantages**
 - code is more complex
 - code is architecture-specific at the bottom
Amdahl asks: where do the cycles go?

- Dominant consumers in applications that occupy major supercomputer centers are:
 - Linear algebra on dense symmetric/Hermitian matrices
 - Hamiltonians (Schroedinger) in chemistry/materials
 - Hessians in optimization
 - Schur complements in linear elasticity, Stokes & saddle points
 - Covariance matrices in statistics
 - Poisson solves
 - Highest order operator in many PDEs in fluid and solid mechanics, E&M, DFT, MD, etc.
 - Diffusion, gravitation, electrostatics, incompressibility, equilibrium, Helmholtz, image processing – even analysis of graphs
Examples being developed at KAUST’s Extreme Computing Research Center

- **QDWH-SVD**, a 4-year-old SVD algorithm that performs more flops but beats state-of-the-art on MICs and GPUs and distributed memory systems.
- **KBLAS**, a library that improves upon or fills holes in L2/L3 BLAS for GPUs and MICs, including batched and hierarchically low-rank routines.
- **BDDC**, a linear preconditioner that performs extra local flops on interfaces for low condition number guarantee in high-contrast elliptic problems.
- **FMM(ε)**, a 31-year-old $O(N)$ solver for potential problems, used in low accuracy as a FEM preconditioner and scaled out on MICs and GPUs.
- **ACR(ε)**, a new spin on 52-year-old cyclic reduction that recursively uses H matrices on Schur complements to reduce $O(N^2)$ complexity to $O(N \log^2 N)$.
- **M/ASPIN**, nonlinear preconditioners that replace most of the globally synchronized steps of Newton iteration with asynchronous local problems.
- **NekBox**, a MIC-optimized version of CFD code Nek5000 that uses extremely high-order schemes to minimize runtime to a given accuracy.
QDWH*-SVD

- DAG-based data flow tile algorithms for (eigen- and) singular value decomposition
- Reduce synchrony
- Increase SIMT-style concurrency
- Chameleont tile library and StarPU dynamic runtime system

*QR-based Dynamically Weighted Halley iteration from Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric Eigenvalue Decomposition and the SVD, Nakatsukasa and Higham, SISC (2013)
QDWH-SVD

- Obtain SVD from a polar decomposition:

 \[A = U_p H \quad \text{polar} \]

 \[H = V \Sigma V^* \quad \text{sym eigen} \]

 \[\Rightarrow A = U_p V \Sigma V^* = U \Sigma V^* \]

- QDWH iteration is a recursive divide-and-conquer method, backward stable

- Based on vendor-optimized kernels, i.e., Cholesky/QR factorizations and GEMM

- Complexity:

 \((10+2/3) n^3\) for well-conditioned system, \(43n^3\) for ill
QDWH-SVD

576 nodes of 64-core KNL (cache/quadrant mode)

![Graph showing performance comparison between different SVD methods for ill-conditioned and well-conditioned matrices.]

- ScaLAPACK PDGESVD, Ill conditioned matrix
- ScaLAPACK QDWH + ScaLAPACK EIG DC, Ill conditioned matrix
- ScaLAPACK QDWH + ELPA EIG DC, Ill conditioned matrix
- ScaLAPACK QDWH + ScaLAPACK EIG DC, Well conditioned matrix
- ScaLAPACK PDGESVD, Well conditioned matrix
- ScaLAPACK QDWH + ELPA EIG DC, Well conditioned matrix

Legend:
- Fastest dense SVD

Available: https://github.com/ecrc/qdwh.git

Sukkari et al., Best papers, Europar’16

c/o D. Sukkari & H. Ltaief (KAUST)
QDWH-SVD

1152 nodes of 32-core Haswell (cache/quadrant mode)

under consideration for Cray LibSci integration

c/o D. Sukkari & H. Ltaief (KAUST)

Sukkari et al., Best papers, Europar’16
available: https://github.com/ecrc/qdwh.git
QDWH-SVD, taskified

Sukkari et al., submitted to IEEE TDPS'17
c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)
QDWH-SVD, taskified

32-cores Intel Haswell + 8 K80s

Time (s)

Matrix Size

MKL-QDWH
Elemental-SVD+GEMM
Elemental-QDWH
MKL-SVD+GEMM
Chameleon-QDWH
Chameleon-QDWH-8xK80

Sukkari et al., submitted to IEEE TDPS’17
c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)
QDWH-SVD, taskified

Sukkari et al., submitted to IEEE TDPS'17
c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA)
KBLAS

- Subset of L2 and L3 BLAS targeting GPU and Intel MIC
 - GEMV, SYMV, TRSM, TRMM
- Batched BLAS for very small sizes on GPUs
 - TRSM, TRMM, SYRK, POTRF, POTRS, POSV, TRTRI, LAUUM, POTRI, POTI
- Recursive formulation
Sample recursively defined KBLAS operations

<table>
<thead>
<tr>
<th>KBLAS Operation</th>
<th>Recursive Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRSM: $AX = \alpha B$</td>
<td>RecTRSM: $A_1 X_1 = \alpha B_1$ (B_2 = \alpha B_2 - A_2 B_1) (A_3 X_2 = B_2)</td>
</tr>
<tr>
<td>TRMM: $B = \alpha A^T B$</td>
<td>RecTRMM: $B_1 = \alpha A_1^T B_1$ (B_1 = \alpha A_2^T B_2 + B_1) (B_2 = \alpha A_3^T B_2)</td>
</tr>
<tr>
<td>SYRK: $B = \alpha A'A^T + \beta B$</td>
<td>RecSYRK: $B_1 = \alpha A_1 A_1^T + \beta B_1$ (B_2 = \alpha A_2 A_2^T + \beta B_2) (B_3 = \alpha A_2 A_3^T + \beta B_3)</td>
</tr>
<tr>
<td>POTRF: $A = LL^T$</td>
<td>RecPOTRF: $A_1 = L_1 L_1^T$ (A_1 X = A_2) (A_3 = -A_2 A_2^T + A_3) (A_3 = L_3 L_3^T)</td>
</tr>
</tbody>
</table>
KBLAS DTRMM

Charara et al., Best papers, EuroPar’16
available: https://github.com/ecrc/kblas
KBLAS DTRSM

![Graph showing performance (GFlop/s) vs matrix dimension for Theo-Peak, cuBLAS_DGEMM, KBLAS (Square), cuBLAS (Square), KBLAS (rows x 512), and cuBLAS (rows x 512) across different matrix dimensions.]

Performance (GFlop/s)

Matrix Dimension

Theo-Peak

cuBLAS_DGEMM

KBLAS (Square)

KBLAS (rows x 512)

cuBLAS (rows x 512)

c/o A. Charara & H. Ltaief (KAUST)

Charara et al., Best papers, EuroPar’16
available: https://github.com/ecrc/kblas
KBLAS now in CUDA 8.0

C. Acknowledgements

NVIDIA would like to thank the following individuals and institutions for their contributions:

- Portions of the SGEMM, DGEMM, CGEMM and ZGEMM library routines were written by Vasily Volkov of the University of California.
- Portions of the SGEMM, DGEMM and ZGEMM library routines were written by Davide Barbieri of the University of Rome Tor Vergata.
- Portions of the DGEMM and SGEMM library routines optimized for Fermi architecture were developed by the University of Tennessee. Subsequently, several other routines that are optimized for the Fermi architecture have been derived from these initial DGEMM and SGEMM implementations.
- The substantial optimizations of the STRSV, DTRSV, CTRSV and ZTRSV library routines were developed by Jonathan Hogg of The Science and Technology Facilities Council (STFC). Subsequently, some optimizations of the STRSM, DTRSM, CTRSM and ZTRSM have been derived from these TRSV implementations.
- Substantial optimizations of the SYMV and HEMV library routines were developed by Ahmad Abdelfattah, David Keyes and Hatem Ltaief of King Abdullah University of Science and Technology (KAUST).
- Substantial optimizations of the TRMM and TRSM library routines were developed by Ali Charara, David Keyes and Hatem Ltaief of King Abdullah University of Science and Technology (KAUST).
Extending KBLAS to batched execution

- **Batched BLAS workshop:**

- **Problem:**
 - individually of low arithmetic intensity
 - memory latency overheads

- **Redesign the legacy BLAS API**
 - launch thousands of small BLAS kernels simultaneously
 - increase device occupancy
 - remove API/kernel launch overheads
 - extend the recursive formulation

- **Driven by scientific data-sparse applications**
 - computational statistics and astronomy
 - Schur complement in sparse direct solvers and BDDC preconditioning
Batched operations

![Diagram with annotations](image)
KBLAS

Example: Batched POTRF

- Nested recursion
- Convert into batch of large GEMMs
- Minimize data transfer
- Enhance data locality
- Increase arithmetic intensity
Batched KBLAS performance comparisons

Single K40 (MKL on 28-core Broadwell)

Multiple K40s (MKL on 28-core Broadwell)
Batched KBLAS performance comparisons

Single K40 (MKL on 28-core Broadwell)

Multiple K40s (MKL on 28-core Broadwell)
Batched KBLAS performance

Ratio of achieved to sustained bandwidth of various KBLAS batched operations in double precision on a K40 GPU with 10240 batch size.

Roofline performance model of KBLAS batched operations in double precision and 10240 batched size running on NVIDIA K40 GPU, on square matrices of size 128.

c/o A. Charara & H. Ltaief (KAUST)
Hierarchical Computations on Manycore Architectures: HiCMA*

* “Hikmah” is the Arabic word for wisdom
Hourglass model for algorithms
Clients: statisticians and astronomers

Large co-variance matrices are everywhere, but many statisticians work in MATLAB or R and can’t scale their science.

log-likelihood function:

$$\ell(\theta) = -\frac{1}{2}Z^T\Sigma^{-1}(\theta)Z - \frac{1}{2}\log|\Sigma(\theta)|$$
European Extremely Large Telescope

“The world’s biggest eye on the sky” (40m diameter)
To be deployed in the Chilean mountains by 2024

- Multi-objective Adaptive optics: a real time application being pursued with Observatoire de Paris
- De-convolve aberrations from atmospheric turbulence by dynamically controlling up to 100,000 small mirrors – a dense Cholesky inversion

Credit: ESO (http://www.eso.org/public/teles-instr/e-elt/)
Balancing Domain Decomposition with Constraints (BDDC)

- Reduce synchrony in Krylov solution to PDE problems by building an optimal preconditioner
 - convergence independent of mesh size, subdomain size, and alignment of subdomain with material interfaces

- For SPD problems, BDDC is built from Cholesky and symmetric eigensolvers
 - harness HiCMA
 - exploit well-known low-rank properties of Schur complements
BDDC: a very robust preconditioner

- Applied inside CG on the SPE10 benchmark
- Darcy flow, using H(div) finite elements
- 20M-45M DOFs, up to 8K subdomains
 - no alignment of subdomain faces with material jumps
- Small, decomposition-independent number of iterations

Condition number and number of iterations as a function of eigenvalue threshold λ and number of subdomains N.

\[
\begin{array}{c|ccccc}
N & \lambda = 10 & \lambda = 5 & \lambda = 2.5 & \lambda = 1.5 \\
\hline
1024 & 15.9/25 & 7.77/17 & 3.57/11 & 1.77/6 \\
2048 & 15.0/25 & 7.76/17 & 3.51/11 & 1.65/6 \\
4096 & 15.4/25 & 8.19/18 & 3.41/11 & 1.68/6 \\
8192 & 16.5/26 & 7.69/17 & 3.51/11 & 1.67/6 \\
\end{array}
\]

\[
\begin{array}{c|ccccc}
N & \lambda = 10 & \lambda = 5 & \lambda = 2.5 & \lambda = 1.5 \\
\hline
1024 & 16.1/24 & 7.31/19 & 3.49/10 & 1.60/6 \\
2048 & 16.7/25 & 7.45/16 & 3.53/10 & 1.61/6 \\
4096 & 15.5/24 & 7.53/16 & 3.57/10 & 1.58/6 \\
8192 & 15.9/24 & 7.77/17 & 3.53/10 & 1.59/6 \\
\end{array}
\]

c/o S. Zampini (KAUST)
BDDC: a very robust preconditioner

- Maxwell equations, using $H(\text{curl})$ finite elements

κ, number of iterations, size of coarse problem (relative to Γ) for different eigenvalue thresholds. β as in figure. 40 subdomains.

c/o S. Zampini (KAUST)
BDDC on the road to exascale

- Reduces the synchronization steps and the number of MatVecs
- Increases arithmetic intensity of the preconditioning step
- Increases concurrency of the preconditioning step

Key features of the algorithm

- Tunable accuracy
- Cholesky based
- Local and coarse problem additively combined (overlap)
- Multilevel extensions with high F/C coarsening ratios $O(10^2) - O(10^4)$

Note: BDDC is distributed in PETSc

c/o S. Zampini (KAUST)
Distributed data structures

Ω subdivided in N non-overlapping open subdomains

$$\overline{\Omega} = \bigcup_{i=1}^{N} \overline{\Omega}_i, \quad \Omega_j \cap \Omega_i = \emptyset, \quad \Gamma = \bigcup_{i \neq j} \partial \Omega_j \cap \partial \Omega_i.$$

Linear system’s matrix A never assembled explicitly; mat-vec as

$$A = \begin{bmatrix} A_{II} & A_{IF} \\ A_{FI} & A_{FF} \end{bmatrix} = R^T A^* R, \quad A^* = \begin{bmatrix} A^{(1)} \\ \vdots \\ A^{(N)} \end{bmatrix},$$

with

$$A^{(i)} = \begin{bmatrix} A_{II}^{(i)} & A_{IF}^{(i)} \\ A_{FI}^{(i)} & A_{FF}^{(i)} \end{bmatrix}$$

the matrix of the FEM problem on Ω_i.

c/o S. Zampini (KAUST)
Condition number results

- If subdomains are solved exactly, overall condition number of the preconditioned system depends only on the Schur preconditioning.

Block factorization for A (I interior, Γ interface)

$$A^{-1} = \begin{bmatrix} I_I & -A_I^{-1}A_{II}^{-1} \end{bmatrix} \begin{bmatrix} A_I^{-1} & \gamma \\ I_{II} & S_\Gamma^{-1} \end{bmatrix} \begin{bmatrix} \gamma \\ -A_{II}^{-1}A_{II}^{-1} \end{bmatrix},$$

with $S_\Gamma = A_{II} - A_{II}^T A_I A_{II}^{-1} A_{II}.$

Block preconditioner

$$M^{-1} = \begin{bmatrix} I_I & -A_I^{-1}A_{II}^{-1} \end{bmatrix} \begin{bmatrix} A_I^{-1} & M_{II}^{-1} \end{bmatrix} \begin{bmatrix} M_{II}^{-1} & I_{II} \\ -A_{II}^T A_{II}^{-1} \end{bmatrix},$$

$$\kappa(M^{-1}A) = \kappa(M_{II}^{-1}S_\Gamma)$$
Global Schur complement is subassembled

\[M_\Gamma^{-1} = \widetilde{R}_{D,\Gamma}^T \widetilde{S}_\Gamma^{-1} \widetilde{R}_{D,\Gamma}, \]

Block Cholesky

\[\widetilde{S}_\Gamma^{-1} = R_{\Gamma\Delta}^T \left(\sum_{i=1}^{N} \begin{bmatrix} 0 & R_{\Delta}^{(i)T} \\ R_{\Delta}^{(i)} & A_{\Delta}^{(i)} \end{bmatrix} \begin{bmatrix} A_{\Delta}^{(i)} & A_{\Delta \Delta}^{(i)} \\ A_{\Delta}^{(i)} & A_{\Delta \Delta}^{(i)} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ R_{\Delta}^{(i)} \end{bmatrix} \right) R_{\Gamma\Delta} + \Phi S_{\eta\eta}^{-1} \Phi^T \]

- Cholesky is everywhere, in high concurrency for batching during both formation and application of the preconditioner
- Also, generalized symmetric eigenproblem on each interface where the “A, B” matrices are from Schur complements
BDDC with low rank Schur approximations

We use the block low rank (BLR) format as introduced by [Amestoy et al, SISC, 2015] (others are possible).

See Gatto & Hasthaven, Dec 2016, J Sci Comput on compressibility of Schur complements for hp finite elements

At full accuracy

- memory complexity from $O(n^{4/3})$ to $O(n^{[0.93,1.13]})$ [Poisson, Helmholtz].
- flops from $O(n^2)$ to $O(n^{[1.4,1.7]})$.

c/o S. Zampini (KAUST)
BDDC with low rank Schur approximations

Darcy problem, SPE10 benchmark. One representative subdomain

Heatmap of block ranks for a given subdomain for different accuracies.

For $\kappa = 1$ and spe10, the average rank needed to achieve accuracy 10^{-6} for a tile of size 64 is observed.
Fast Multipole for Poisson solves

- Increase arithmetic intensity
- Reduce synchrony
- Increase concurrency
Arithmetic intensity of numerical kernels

Operational intensity (flop/byte)

Double precision performance (Gflop/s)

- Intel Sandy Bridge
- AMD Abu Dhabi
- IBM BG/Q
- Fujitsu FX10
- NVIDIA Kepler
- Intel Xeon Phi

up two orders of magnitude
Hierarchical interactions of Fast Multipole

(a) Direct method

(b) Fast Multipole Method

c/o R. Yokota (TiTech, KAUST)
Geometrical structure of Fast Multipole

source particles

log(N) levels

M2L

M2M

P2M

P2P

L2L

L2P

c/o R. Yokota (TiTech, KAUST)
Within an FMM application, data pipelines of different types and different levels can be executed asynchronously.

- FMM simply adds up (hierarchically transformed) contributions
- e.g., P2P and P2M -> M2M -> M2L -> L2L -> L2P

Geographically distinct targets can be updated asynchronously.
Features of FMM

- High arithmetic intensity
- No all-to-all communication
- $O(\log P)$ messages
 - with high concurrency and asynchrony among themselves
- Up to $O(N)$ arithmetic concurrency
- Tunable granularity in the sense of “h-p”
 - based on analytic “admissibility condition”
- Inside 8 Gordon Bell Prizes, 1997-2012
- Many effective implementations on GPUs
- But fragile (based on analytical forms of operators)
ExaFMM on KNL in all-to-all cluster mode

e.g., 16 ranks, 1 thread ea.

e.g., 16 ranks, 2 threads ea.

each endpoint represents 256 threads

Procs=1
Procs=2
Procs=4
Procs=8
Procs=16
Procs=32
Procs=64
Procs=128

Time [s]

10^0
10^1
10^2
10^3

MPI Procs x Threads per Proc

10^0
10^1
10^2
10^3

16 ranks, 1 thread ea.

16 ranks, 2 threads ea.
Figure 5: Breakdown of the calculation time for TBB thread & MPI process scalability.
FMM as preconditioner

- FMM is a solver for free-space problems for which one has a Green’s function
- For finite boundaries, FMM combines with BEM
- FMM and BEM have controllable truncation accuracies; can precondition other, different discretizations of the same PDE
- Can be regarded as a preconditioner for “nearby” problems, e.g., ∇^2 for $\nabla \cdot (1 + \varepsilon(\tilde{x}))\nabla$
FMM’s role in solving PDEs

\[u = \int_{\Gamma} \frac{\partial u}{\partial n} G d\Gamma - \int_{\Gamma} u \frac{\partial G}{\partial n} d\Gamma + \int_{\Omega} f G d\Omega \quad \text{in} \ \Omega \]

The preconditioner is reduced to a matvec, like the forward operator itself – the same philosophy of the sparse approximate inverse (SPAI), but cheaper.

More concurrency, more intensity, less synchrony than ILU, MG, DD, etc.

c/o H. Ibeid (UIUC, KAUST’16)
FMM/BEM preconditioning of FEM

Poisson

Wave

Helmholtz

Residual vs. Iterations for different methods and parameters

References:

c/o H. Ibeid (UIUC, KAUST’16)
Other galaxies?
How will complex PDE codes adapt?

- Programming model will still be dominantly message-passing (due to large legacy code base), adapted to multicore or hybrid processors beneath a relaxed synchronization MPI-like interface
- Load-balanced blocks, scheduled today with nested loop structures will be separated into critical and non-critical parts
- Critical parts will be scheduled with directed acyclic graphs (DAGs) through dynamic languages or runtimes
- Noncritical parts will be made available for NUMA-aware work-stealing in economically sized chunks
Asynchronous programming styles

- To take full advantage of such asynchronous algorithms, we need to develop greater expressiveness in scientific programming
 - create separate threads for logically separate tasks, whose priority is a function of algorithmic state, not unlike the way a time-sharing OS works
 - join priority threads in a directed acyclic graph (DAG), a task graph showing the flow of input dependencies; fill idleness with noncritical work or steal work
Evolution of Newton-Krylov-Schwarz: breaking the synchrony stronghold

- Can write code in styles that do not require artifactual synchronization
- Critical path of a nonlinear implicit PDE solve is essentially...
 ... lin_solve, bound_step, update; ...
- However, we often insert into this path things that could be done less synchronously, because we have limited language expressiveness
 - Jacobian and preconditioner refresh
 - convergence testing
 - algorithmic parameter adaptation
 - I/O, compression
 - visualization, data analytics
Sources of nonuniformity

- **System**
 - *Already* important: manufacturing, OS jitter, TLB/cache performance variations, network contention,
 - *Newly* important: dynamic power management, more soft errors, more hard component failures, software-mediated resiliency, etc.

- **Algorithmic**
 - physics at gridcell/particle scale (e.g., table lookup, equation of state, external forcing), discretization adaptivity, solver adaptivity, precision adaptivity, etc.

- **Effects of both types are similar when it comes to waiting at synchronization points**

- **Possible solutions for system nonuniformity will improve programmability for nonuniform problems, too 😊**
Conclusions

- Plenty of ideas exist to adapt or substitute for favorite solvers with methods that have:
 - reduced synchrony (in frequency and/or span)
 - higher residence on the memory hierarchy
 - greater SIMT/SIMD-style shared-memory concurrency
 - built-in resilience (“algorithm-based fault tolerance” or ABFT) to arithmetic/memory faults or lost/delayed messages

- Programming models and runtimes may have to be stretched to accommodate

- Everything should be on the table for trades, beyond disciplinary thresholds ➔ “co-design”
Thanks to:

- GPU RESEARCH CENTER
- intel
- CRAY CENTRE OF EXCELLENCE
Next **HPC for Upstream** meeting...

Third EAGE Workshop on High Performance Computing for Upstream

Date 1 - 4 October
Location Athens, Greece

Registration ❌ Closed
Call for papers ✔ Open

Important Dates

- Call for Abstracts Open 1 October 2016
- Call for Abstracts Close 31 March 2017
- Registration Open 1 June 2017
- Early Registration Close 1 August 2017
- Late Registration Open 2 August 2017

Welcome to Athens!

Brochures available in exhibit hall, but note extended abstract deadline:
31 March
Thank you!

 شكراً

david.keyes@kaust.edu.sa