Problem-based Interdisciplinary STEM with Hummingbird Robotics

VSTE
December 5, 2016

Dr. Paula Leach, paula@ittip.org
Stephanie Playton, stephanie@ittip.org
PISTEM: Overview

• Grades 5-12

• All subjects

• Summer PD
 – School year follow-up
PISTEM: Overview

- Hummingbird Robotics
- Problem-based Learning
- STEM & Engineering Design

http://www.ittip.org
VSTE: Problem-based Interdisciplinary STEM with Hummingbird Robotics

PISTEM: Overview

Follow Us on YouTube!
https://www.youtube.com/user/ITTIPChannel

http://www.ittip.org
Hummingbird
In Virginia Schools

Over 200 Loaner Kits
19 Counties

48 Teachers

http://www.ittip.org
• **Hummingbird**
 Developed through CREATE Lab at Carnegie Mellon University -
 Now, Birdbrain Technologies

Kit Contents

1- Hummingbird Duo Controller
1 – Power Supply
1 – USB Cable
8 – LEDs
2 – Tri-Color LEDs

Image from: http://www.hummingbirdkit.com
• **Hummingbird**

Kit Contents (cont.)

2- Vibration Motors
4 - Servos
4 – Servo Extensions
2 – DC Motors
1 – Light Sensor
1 – Temperature Sensor
1- Microphone Sensor
1 – Distance Sensor
1 – Rotary Knob

Image from: http://www.hummingbirdkit.com
• Hummingbird

Integration of Arts & Crafts into Engineering

http://www.ittip.org
• Hummingbird

Improvements (Duo)

- Microcontroller Arduino-powered standalone mode
- Works with other interfaces/shields
 - Pixy (a camera)
 - Vernier Probes
 - Third Party Shields
- Bluetooth controlled (iPad)

Images from: http://store.birdbraintechnologies.com/
VSTE: Problem-based Interdisciplinary STEM with Hummingbird Robotics

• Hummingbird (recommended grades 2 - 12)

 Programming

 Beginner (Age 8+)
 Visual Programmer
 Intermediate (Age 11+)
 Scratch 2.0
 Snap!
 Advanced (Age 13+)
 Python
 Raspberry Pi
 Calico
 Processing
 Java

Image from: PI STEM, SCHEV Grant, 2014
VSTE: Problem-based Interdisciplinary STEM with Hummingbird Robotics

• Visual Programmer
 Training Comics
 Training Videos

Images from: Visual Programmer interface

http://www.ittip.org
Scratch

Lifelong Kindergarten Group at the MIT Media Lab (2003)
Visual programming
Ages 8 to 16
Promotes creativity, systematic reasoning, & collaboration
Storytelling
Animation
Games
Other

Statistics
Free

Scratch online/offline
“Sister” programs (like “Snap”)

Image from: http://www.catrobat.org/
• Scratch

Getting Started w Scratch
Step-by-Step Intro

Getting Started Guide

Video tutorials

Scratch “cards”

http://www.ittip.org
• **Scratch**

Scratch with Hummingbird

More Blocks

- Set the power to motor on the port used (1 or 2).
- The range is -100 to 100. If the speed is set to "0", the motor is not moving.
- Reads in Celsius.
- Reads value of sound sensor, 0 to ~ 100.
- Reads value of distance sensor, 0 to 100.
- Reads value of knob, 0 to 100.
- Integrate some "control" blocks with your LED block(s).

[Image of Scratch code blocks with Hummingbird components]
Problem-based Learning

Students solving a problem with multiple solutions over time in a real-world context.
Problem-based Learning

Why?

- Provides students with a context for learning
- Naturally connects different subjects
- Effective for different types of learners
In isolation, PBL is NOT:

- A culminating project at the end of a unit
- Completing a STEM project
- Solving word problems in a mathematics worksheet
VSTE: Problem-based Interdisciplinary STEM with Hummingbird Robotics

http://www.ittip.org
VSTE: Problem-based Interdisciplinary STEM with Hummingbird Robotics

http://www.ittip.org
• Lesson Plans

http://www.ittip.org/index.php/lesson-plans

Search “PISTEM”

21 published lessons
VSTE: Problem-based Interdisciplinary STEM with Hummingbird Robotics

• Overall

Time

Quick Programming Example - 30 minutes
Problem-based learning - 6 - 8 hours

Successes

Great for facilitating 5 Cs
Coding experiences

Challenges

Understanding the parts and how they work

http://www.ittip.org
• Questions

Dr. Paula Leach, paula@ittip.org @ITTIPSTEM

Stephanie Playton, stephanie@ittip.org @STEMGal