Learning Target and Rubric Development Process

For a **Standards-Based and Criterion-Referenced Grading** program to work as designed you need:

- Standards (Learning Targets, I can statements, benchmarks, indicators, domains, etc)
- Criteria (Rubrics)

Citing Wiggins and McTighe (*Understanding by Design*, 2005), they propose the following three-part “backwards design” model:

Part 1 - Learning Target Development Steps

1. Determine which national or state standards will guide this work and develop a level of expertise in these standards.
2. Determine the language to be used - target, standard etc. - for both instruction and reporting (ie: what goes on the report card when grades are posted? Are you reporting to “standards” or rolling everything into a single course grade?)
3. Review Doug Reeves work around “Power Standards” (*Making Standards Work*, 1998), as his is one of the best guides for this difficult work. He uses the phrase “**power standards**” to describe standards that are:
 - The prioritized academic expectations that educators determine to be the most critical and essential for students to learn
 - Power Standards may be limited to a handful for a course or department
 - Require students to acquire and demonstrate strong understanding of a complex subject or sophisticated skill.

Once you create a list of possible “power standards” (or Learning Targets) vet them against these three criteria:

- **Endurance** - Standards that focus on knowledge and skills that will be relevant throughout a student’s lifetime.
- **Leverage** - Standards that focus on knowledge and skills used in multiple academic areas.
- **Essentiality** - Standards that focus on knowledge and skills necessary for students to succeed in the next grade level or the next sequential course in an academic level.

A simple way to articulate your Power Standards:

“**The 3-6 most important things we want students to know and be able to do and retain long** after the completion of a course.”
4. Once the proposed standards meet these criteria, vet them against the following:

- Do they both accurately tell the achievement story of a student in your course, while also providing the framework for which instruction, assessment and feedback will be provided?

5. Finally, build a continuous feedback loop for learning target revisions and be aware of the tendency for teachers to “fit” past practice into new targets, rather than letting the new targets shape new instruction to match the new ‘desired results’.

Part 2 - Rubric Development Steps

1. Break each target into a list of “nouns” and “verbs”.
2. Each noun indicates a rubric needed.
3. Each verb will become part of the rubric developed.
4. Use DOK, Hess’ Cognitive Matrix, Bloom’s Taxonomy, Costa’s Levels of Questions to create rubrics that increase in cognitive complexity as you move from a lower to a higher score.

 Ex: Students will use **place value understanding** and **properties of operations** to add and subtract.

 With this CCSS standard, you would need to develop a rubric for “place value understanding” and “properties of operations”.

 (Note: CCSS breaks this standard down into smaller pieces, which would guide your rubric development. Some foundational skills - like skip counting - are better served with single-point rubrics, however most secondary targets work well with the “one-line” rubrics shown below.)

 For this Learning Target:

 Students will develop and apply the skills of inquiry, data analysis, scientific investigations, and evaluation of models.

 Rubrics needed for this science target include “inquiry”, “data analysis”, “scientific investigations” and “evaluation of models”.

 Ex: Inquiry Rubric

<table>
<thead>
<tr>
<th>4 - Advanced</th>
<th>3 - Proficient</th>
<th>2 - Basic (or Approaching Proficiency)</th>
<th>1 - Minimal (or Far Below Proficiency)</th>
<th>0 - Insufficient Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can apply the given problem to another relevant situation, and support my work with evidence that moves beyond the obvious.</td>
<td>I can analyze data and apply background knowledge to present a plausible / logical solution to the problem that is supported by evidence.</td>
<td>I can summarize the problem in my own words and form a hypothesis based on evidence and/or prior knowledge.</td>
<td>I can identify the problem to solve.</td>
<td>I cannot identify the problem to solve.</td>
</tr>
</tbody>
</table>

5. These rubrics become the “common rubrics” for a course - no need to recreate them for each content assessment.

6. Use DOK to create general **content rubrics** for content targets (if present). “Proficiency” should be in the “strategic thinking (Level 3)” category.

7. Criteria of good rubrics. Vet yours against the list provided or create your own “checklist” of what your team (and researchers) feel are good rubric design qualities. Many authors have created books on rubrics - choose your pathway and let them guide your own thinking! (You learn to do the work by doing the work.)