Building a Case for Blended Learning

ISN National Conference on Educational Innovation 2016
http://isnresources.weebly.com/

Jason Smith - Associate Principal
eAchieve Academy - School District of Waukesha
Session Description

This interactive session models a workshop facilitated by the Christensen Institute staff at the recent iNACOL Blended and Online Learning Symposium. Participants will discover current research and examples of Blended Learning Models, and identify their current instructional challenges and goals that might be solved with a Blended approach. Attendees will then participate in an 8-step process to design a Blended Learning Model that will help solve their current instructional challenges and reach their achievement goals.
Learning Outcomes

Analyze research regarding the impact of Blended Learning models on student achievement.

Define Blended Learning and distinguish it from technology-rich instruction.

Categorize Blended Learning models, and examine their SAMR connections.

Craft your own “Rallying Cry” for building an effective Blended Learning Model.

Engage in an 8-step process for building an effective Blended Learning Model.
“The most common misnomer related to blended learning is to confuse blended learning with technology-rich instruction.”

-M. Horn and H. Staker (Blended 2015)
Definition of Blended Learning

A formal education program in which a student learns at least in part through **online learning**, with some element of student control over time, place, path and/or pace.

at least in part in a **supervised brick-and-mortar location away from home** (such as school).

The modalities along each student’s learning path within a course or subject **are connected to provide an integrated learning experience**.
Technology-Rich Learning

Sonya attends a full-time virtual school off campus

Angel rotates in class between online and small-group instruction

Blended Learning
Consider how instruction can be “leveled up” for both the online and F2F components.

How can they be connected?
The online component must push out content so students can access new learning.

Key Takeaway:
“Microscale Differentiation”

Leverage Technology to differentiate for individual learners.

A formal education program in which a student learns at least in part through **online learning**, with some element of student control over time, place, path and/or pace.

at least in part in a **supervised brick-and-mortar location away from home** (such as school).

The modalities along each student’s learning path within a course or subject are connected to provide an **integrated learning experience**.

Online and F2F instruction and data must inform each other and not work in isolation.
What does the current research say about Blended Learning?
Research Study #1
Hamilton County Community Unit School District 10 (Illinois)

Blended Learning Success Proof Points

Grade levels that blended their math and reading classes outperformed grade levels that used traditional instructional methods during the 2014-15 school year.

- In math, grades using blended learning outpaced their expected gains by 169%, compared to non-blended grades that outpaced their expected gains by 120%.

- In reading, grades using blended learning outpaced their expected gains by 130%, compared to non-blended grades that outpaced their expected gains by 107%.

<table>
<thead>
<tr>
<th>GRADE</th>
<th>MATH</th>
<th>READING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Traditional classes</td>
<td>Blended classes</td>
</tr>
<tr>
<td>K</td>
<td>121%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>142%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>201%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>176%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>96%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>122%</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>120%</td>
<td>169%</td>
</tr>
</tbody>
</table>
Research Study #2
Washington County School District (Utah)

Blended Learning Success Proof Points

The district's graduation rate has improved from 80% in 2012 to 88% in 2014, and the high schools that have implemented the most recovery-content courses, including Dixie High School, have shown the largest increases in graduation rates.

Graduation Rates

<table>
<thead>
<tr>
<th>Year</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>80%</td>
</tr>
<tr>
<td>2013</td>
<td>84%</td>
</tr>
<tr>
<td>2014</td>
<td>88%</td>
</tr>
</tbody>
</table>
Research Study #3
Enlarged City School District of Middletown (New York)

Blended Learning Success Proof Points

- Students in blended classrooms outperformed students in traditional classrooms by 18% on Spring 2015 NWEA MAP and MAP for Primary Grades (MPG) reading scores.
- Students in blended classrooms outperformed students in traditional classrooms by 7% on Spring 2015 NWEA MAP and MPG math scores.

Comparative RIT Growth: Blended vs. Non-Blended Students (Reading)

Comparative RIT Growth: Blended vs. Non-Blended Students (Math)
Research Study #4
Idaho Rural Schools & Idaho Digital Learning Academy (Idaho)

Academic Ability
- Student-led location of resources: 67.7%
- Student responsibility for learning: 67.5%
- Development of higher-level thinking skills: 56.4%
- Improvement in homework and test scores: 53.8%
- Student perseverance: 52.5%

Student Engagement
- Student time on task: 57.5%
- Student motivation to participate in class: 65.4%
- Interest level of students during instruction: 55%
- Student behavior issues: 52.5%
- Student excitement during class: 42.5%
Blended Learning Models

Developed by studying existing models and categorizing based on similarities
Blended Learning Models
Station Rotation Model

Online instruction

Teacher-led instruction

Collaborative activities and stations
Lab Rotation Model

- Direct instruction: math/science
- Direct instruction: literacy/social studies
- Learning lab: reading/math
Individual Rotation Model
Flipped Classroom Model

School

Practice and projects

Home

Online instruction and content

Online learning

Offline learning

Teacher
Flex Model
A la Carte Model
Enriched Virtual Model

Online instruction and content

Face-to-face supplementation

Online learning

Offline learning

Teacher
8-Step Blended Learning Design Process

Christensen Institute Blended Learning Workshop

iNACOL Symposium - November 2015

Design Worksheets (Handouts)
Overview of the Design Process

1. Identify and prioritize assumptions
2. Shape the culture
3. Choose the model(s)
4. Design the teaching experience
5. Design the student experience
6. Organize the team
7. Choose a SMART rallying cry
8. Content
9. Technology
10. Facilities

Test and learn. Adjust!
Task 1: Identify 10 problems that you currently face related to student achievement, engagement and success. (core vs non-consumption problems)

ex: students are reading below grade level

Task 2: Relate 1-2 problems to either a school or personal goal (SLO, PPG?) or write a new goal statement...

ex: Our goal is for 85% of students to be College and Career Ready in Reading upon entry into 9th Grade.
Task 3: Craft your “moral imperative” or “rallying cry”. Key part of the process.

Be able to answer this question for parents, students, colleagues and school leaders: “How will a blended model help you to solve your problem and reach your goal?”

(If you skip this step and start building your model, your model won’t align with your goals or problems, and you will have to revisit this again later...)

A Blended Learning Model will help students reach their achievement goals by:
1) _________________ 2) _________________ 3) _________________
Concept: Match the team to the task and be intentional in your team design

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Team Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flip a classroom</td>
<td>Functional</td>
</tr>
<tr>
<td>Teachers want students to rotate to a lab 3x/week</td>
<td>Lightweight</td>
</tr>
<tr>
<td>Rethink bell schedules, teacher roles to boost reading scores</td>
<td>Heavyweight</td>
</tr>
<tr>
<td>Dropout recovery</td>
<td>Autonomous</td>
</tr>
</tbody>
</table>
Premise 1: Students have two main jobs to accomplish in their lives:
1. Experience success and make progress
2. Have fun with friends

Premise 2: Students “hire” school experiences to help accomplish these jobs.

Based on these premises, brainstorm 10 experiences students would be likely to “hire” in order to get these jobs done.
(ex: Authentic Science Labs; Socratic Seminars; 1:1 teacher-student conferencing)

Pick 1-2 and brainstorm how you could integrate those experiences into your blended learning design. SAMR connections?
What’s the best use of face-to-face time?

- Mentor
- Facilitator
- Tutor
- Evaluator
- Counselor
Because this is the fun part of the design process it’s natural to skip steps 1-3 and start here.

If you follow the process, this step becomes much easier because you can now design teacher and teaching experiences that align perfectly with your goals, rallying cry and student experiences.

Task: Choose 2 “student experiences” from the last activity and brainstorm what the teachers roles and experiences could be to integrate the student experience. ex: in a Socratic Seminar the teachers role is ‘facilitator’. How could you integrate?
Step 5 - “Build the Virtual Environment”

<table>
<thead>
<tr>
<th>Strategies</th>
<th>Examples</th>
</tr>
</thead>
</table>
| DIY - Do it yourself | http://school.demo.moodle.net/
(Teacher designed online courses) |
| Use one outside provider | [Florida Virtual School HS Courses Edgenuity](http://school.demo.moodle.net/) |
| Combine multiple providers | Live Binders |
| Use a facilitated network | [Khan Academy Activate Instruction](http://school.demo.moodle.net/) |
Task 1 - Brainstorm your dream space.

Task 2 - Brainstorm how to hack your existing space

<table>
<thead>
<tr>
<th>Ideas for adjusting existing environment</th>
<th>Benefits</th>
<th>Estimated costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using the chart on the next slide, analyze your circumstances across 6 dimensions, and then total each column.

To refine your thinking, consider these questions:

1. Which questions from the first column matter the most in your circumstances? What models did you circle the most times alongside those high-priority questions?

2. Based on the rankings above, which models do you think fit your circumstances in the most number of ways and in the highest priority ways?
<table>
<thead>
<tr>
<th>Question</th>
<th>Station Rotation</th>
<th>Lab Rotation</th>
<th>Flipped Classroom</th>
<th>Individual Rotation</th>
<th>Flex</th>
<th>A La Carte</th>
<th>Enriched Virtual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. What problem are you trying to solve?</td>
<td>Core problem involving mainstream students</td>
<td>Core problem involving mainstream students</td>
<td>Core problem involving mainstream students</td>
<td>Nonconsumption problem</td>
<td>Nonconsumption problem</td>
<td>Nonconsumption problem</td>
<td>Nonconsumption problem</td>
</tr>
<tr>
<td>2. What type of team do you need to solve the problem?</td>
<td>Functional, lightweight, or heavyweight</td>
<td>Lightweight or heavyweight</td>
<td>Functional or lightweight</td>
<td>Autonomous</td>
<td>Autonomous</td>
<td>Autonomous</td>
<td>Autonomous</td>
</tr>
<tr>
<td>3. What do you want students to control?</td>
<td>Their pace and path during the online portion of the course</td>
<td>Their pace and path during the online portion of the course</td>
<td>Their pace and path during the online portion of the course</td>
<td>Their pace and path throughout most all of the course</td>
<td>Their pace and path throughout most all of the course, with the flexibility to skip in-person class at times</td>
<td>Their pace and path throughout most all of the course, with the flexibility to skip in-person class at times</td>
<td></td>
</tr>
<tr>
<td>4. What do you want the primary role of the teacher to be?</td>
<td>Delivering face-to-face instruction</td>
<td>Delivering face-to-face instruction</td>
<td>Providing face-to-face tutoring, guidance, and enrichment to supplement online lessons</td>
<td>Providing face-to-face tutoring, guidance, and enrichment to supplement online lessons</td>
<td>Providing face-to-face tutoring, guidance, and enrichment to supplement online lessons</td>
<td>Serving as the online teacher-of-record</td>
<td>Providing face-to-face tutoring, guidance, and enrichment to supplement online lessons</td>
</tr>
<tr>
<td>5. What physical space can you use?</td>
<td>Existing classrooms</td>
<td>Existing classrooms</td>
<td>Existing classrooms</td>
<td>A large, open learning space</td>
<td>A large, open learning space</td>
<td>Any safe, supervised setting</td>
<td>A large, open learning space</td>
</tr>
<tr>
<td>6. How many internet-enabled devices are available?</td>
<td>Enough for a fraction of the students</td>
<td>Enough for a fraction of the students</td>
<td>Enough for all students to use in class and have at home or after school</td>
<td>Enough for all students throughout the entire class period</td>
<td>Enough for all students throughout the entire class period</td>
<td>Enough for all students to use in class and have at home or after school</td>
<td>Enough for all students to use in class and have at home or after school</td>
</tr>
</tbody>
</table>

Totals:
Use the discovery-driven planning worksheet on the next slide to “discover your way to success”

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Risk (1, 2, 3)</th>
<th>Confidence (1, 2, 3)</th>
<th>Rank (Avg.)</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Column</td>
<td>Directions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Assumption</td>
<td>Refer to your SMART goal and how you will measure when that outcome has been achieved. List all the assumptions that must prove true for the desired outcome to materialize. Consider assumptions related to each of your design elements, including your teams, student experience and schedule, teacher roles, physical and virtual environment, the blended model and where it is being implemented, and the culture.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2 | Risk | What would happen if you are wrong about each assumption?
1 = Being wrong will be catastrophic to the project
2 = Being wrong would be a medium-sized problem
3 = It’s no big deal if we’re wrong
Enter your numerical ranking in the Risk column. |
| 3 | Confidence | How confident you are that the assumption is correct?
1 = No confidence at all that the assumption is correct
2 = Medium level of confidence
3 = We have no idea if this assumption is correct
Enter your numerical ranking in the Confidence column. |
| 4 | Rank | Rank the assumptions from most to least crucial by calculating the average of each assumption’s Risk and Confidence scores. |
| 5 | Test | What test could you design to confirm the validity of each assumption? Plan to test the most important assumptions—those with a rank close to 1.0—first because they are the assumptions that are the most crucial to the project’s success and they have the least confidence behind them. |
How might your new understanding of Blended Learning Models enable you to “level up” in the SAMR framework?

With deeper understanding, you can “build your own” case for Blended Learning Models.
Learning Outcomes

Analyze research regarding the impact of Blended Learning models on student achievement.

Define Blended Learning and distinguish it from technology-rich instruction.

Categorize Blended Learning models, and examine their SAMR connections.

Craft your own “Rallying Cry” for building an effective Blended Learning Model.

Engage in an 8-step process for building an effective Blended Learning Model.

Thank you!
jsmith@waukesha.k12.wi.us
jsmithwvc@gmail.com
262.470.1899
Works Cited

Clayton Christensen Institute Website: http://www.christenseninstitute.org/blended-learning/

iNACOL Workshop Materials (2015)